文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于图像特定精细调整的深度学习的交互式医学图像分割。

Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning.

出版信息

IEEE Trans Med Imaging. 2018 Jul;37(7):1562-1573. doi: 10.1109/TMI.2018.2791721.


DOI:10.1109/TMI.2018.2791721
PMID:29969407
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6051485/
Abstract

Convolutional neural networks (CNNs) have achieved state-of-the-art performance for automatic medical image segmentation. However, they have not demonstrated sufficiently accurate and robust results for clinical use. In addition, they are limited by the lack of image-specific adaptation and the lack of generalizability to previously unseen object classes (a.k.a. zero-shot learning). To address these problems, we propose a novel deep learning-based interactive segmentation framework by incorporating CNNs into a bounding box and scribble-based segmentation pipeline. We propose image-specific fine tuning to make a CNN model adaptive to a specific test image, which can be either unsupervised (without additional user interactions) or supervised (with additional scribbles). We also propose a weighted loss function considering network and interaction-based uncertainty for the fine tuning. We applied this framework to two applications: 2-D segmentation of multiple organs from fetal magnetic resonance (MR) slices, where only two types of these organs were annotated for training and 3-D segmentation of brain tumor core (excluding edema) and whole brain tumor (including edema) from different MR sequences, where only the tumor core in one MR sequence was annotated for training. Experimental results show that: 1) our model is more robust to segment previously unseen objects than state-of-the-art CNNs; 2) image-specific fine tuning with the proposed weighted loss function significantly improves segmentation accuracy; and 3) our method leads to accurate results with fewer user interactions and less user time than traditional interactive segmentation methods.

摘要

卷积神经网络 (CNN) 在自动医学图像分割方面取得了最先进的性能。然而,它们在临床应用中还没有表现出足够的准确性和鲁棒性。此外,它们还受到缺乏图像特定的适应性和缺乏对以前未见的目标类别的泛化能力(即零镜头学习)的限制。为了解决这些问题,我们提出了一种新的基于深度学习的交互式分割框架,将 CNN 纳入基于边界框和手写的分割管道中。我们提出了特定于图像的微调,以使 CNN 模型适应特定的测试图像,这可以是无监督的(无需额外的用户交互)或有监督的(有额外的手写)。我们还提出了一种考虑网络和交互不确定性的加权损失函数用于微调。我们将此框架应用于两个应用程序:从胎儿磁共振 (MR) 切片中分割多个器官,其中仅对两种类型的器官进行了注释以供训练;从不同的 MR 序列中分割脑肿瘤核心(不包括水肿)和整个脑肿瘤(包括水肿),其中仅对一种 MR 序列中的肿瘤核心进行了注释以供训练。实验结果表明:1) 与最先进的 CNN 相比,我们的模型对以前未见的对象的分割更具鲁棒性;2) 具有所提出的加权损失函数的特定于图像的微调显著提高了分割准确性;3) 与传统的交互式分割方法相比,我们的方法只需较少的用户交互和较少的用户时间即可获得准确的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/fc22177feb44/wang13-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/ee74f2a135ae/wang1-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/6cc30e1f3fbf/wang2ab-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/721ad3266170/wang3-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/d7832182b196/wang4-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/a9e4b667284d/wang5-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/eaa850d09f53/wang6-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/73d4b797a2b5/wang7-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/9a6ff105565e/wang8abcdefg-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/0a801cb907f0/wang9-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/a35dc03cd102/wang10-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/2684174b783d/wang11ab-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/8745b6655965/wang12ab-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/fc22177feb44/wang13-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/ee74f2a135ae/wang1-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/6cc30e1f3fbf/wang2ab-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/721ad3266170/wang3-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/d7832182b196/wang4-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/a9e4b667284d/wang5-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/eaa850d09f53/wang6-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/73d4b797a2b5/wang7-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/9a6ff105565e/wang8abcdefg-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/0a801cb907f0/wang9-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/a35dc03cd102/wang10-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/2684174b783d/wang11ab-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/8745b6655965/wang12ab-2791721.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ac6/6051485/fc22177feb44/wang13-2791721.jpg

相似文献

[1]
Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning.

IEEE Trans Med Imaging. 2018-7

[2]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[3]
DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2018-6-1

[4]
MIDeepSeg: Minimally interactive segmentation of unseen objects from medical images using deep learning.

Med Image Anal. 2021-8

[5]
ScribSD+: Scribble-supervised medical image segmentation based on simultaneous multi-scale knowledge distillation and class-wise contrastive regularization.

Comput Med Imaging Graph. 2024-9

[6]
Deep superpixel generation and clustering for weakly supervised segmentation of brain tumors in MR images.

BMC Med Imaging. 2024-12-18

[7]
Minimally interactive segmentation of soft-tissue tumors on CT and MRI using deep learning.

Eur Radiol. 2025-5

[8]
Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.

Magn Reson Imaging. 2019-6-7

[9]
An Efficient Implementation of Deep Convolutional Neural Networks for MRI Segmentation.

J Digit Imaging. 2018-10

[10]
An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI.

Neuroimage. 2019-11-6

引用本文的文献

[1]
FastSAM3D: An Efficient Segment Anything Model for 3D Volumetric Medical Images.

Med Image Comput Comput Assist Interv. 2024-10

[2]
Interactive AI annotation of medical images in a virtual reality environment.

Int J Comput Assist Radiol Surg. 2025-8-18

[3]
Optimal Res-UNET architecture with deep supervision for tumor segmentation.

Front Med (Lausanne). 2025-5-30

[4]
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.

Med Image Comput Comput Assist Interv. 2024-10

[5]
Real-Time Coronary Artery Dominance Classification from Angiographic Images Using Advanced Deep Video Architectures.

Diagnostics (Basel). 2025-5-8

[6]
Medical Image Segmentation: A Comprehensive Review of Deep Learning-Based Methods.

Tomography. 2025-4-30

[7]
Attention-Enhanced Multi-Task Deep Learning Model for Classification and Segmentation of Esophageal Lesions.

ACS Omega. 2025-3-4

[8]
Dual-branch dynamic hierarchical U-Net with multi-layer space fusion attention for medical image segmentation.

Sci Rep. 2025-3-10

[9]
Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review.

J Imaging Inform Med. 2025-3-4

[10]
Artificial intelligence in medical imaging: From task-specific models to large-scale foundation models.

Chin Med J (Engl). 2025-3-20

本文引用的文献

[1]
Automatic Brain Tumor Segmentation Based on Cascaded Convolutional Neural Networks With Uncertainty Estimation.

Front Comput Neurosci. 2019-8-13

[2]
DeepIGeoS: A Deep Interactive Geodesic Framework for Medical Image Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2018-6-1

[3]
A survey on deep learning in medical image analysis.

Med Image Anal. 2017-7-26

[4]
3D deeply supervised network for automated segmentation of volumetric medical images.

Med Image Anal. 2017-5-8

[5]
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.

IEEE Trans Pattern Anal Mach Intell. 2017-4-27

[6]
Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.

Med Image Anal. 2016-10-29

[7]
DeepCut: Object Segmentation From Bounding Box Annotations Using Convolutional Neural Networks.

IEEE Trans Med Imaging. 2017-2

[8]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[9]
Slic-Seg: A minimally interactive segmentation of the placenta from sparse and motion-corrupted fetal MRI in multiple views.

Med Image Anal. 2016-12

[10]
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?

IEEE Trans Med Imaging. 2016-3-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索