Suppr超能文献

基于改进灰狼算法-极限学习机森林的风力发电机组电动变桨系统故障检测

Fault Detection of Wind Turbine Electric Pitch System Based on IGWO-ERF.

作者信息

Tang Mingzhu, Yi Jiabiao, Wu Huawei, Wang Zimin

机构信息

School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China.

Hubei Key Laboratory of Power System Design and Test for Electrical Vehicle, Hubei University of Arts and Science, Xiangyang 441053, China.

出版信息

Sensors (Basel). 2021 Sep 16;21(18):6215. doi: 10.3390/s21186215.

Abstract

It is difficult to optimize the fault model parameters when Extreme Random Forest is used to detect the electric pitch system fault model of the double-fed wind turbine generator set. Therefore, Extreme Random Forest which was optimized by improved grey wolf algorithm (IGWO-ERF) was proposed to solve the problems mentioned above. First, IGWO-ERF imports the Cosine model to nonlinearize the linearly changing convergence factor α to balance the global exploration and local exploitation capabilities of the algorithm. Then, in the later stage of the algorithm iteration, α wolf generates its mirror wolf based on the lens imaging learning strategy to increase the diversity of the population and prevent local optimum of the population. The electric pitch system fault detection method of the wind turbine generator set sets the generator power of the variable pitch system as the main state parameter. First, it uses the Pearson correlation coefficient method to eliminate the features with low correlation with the electric pitch system generator power. Then, the remaining features are ranked by the importance of the RF features. Finally, the top N features are selected to construct the electric pitch system fault data set. The data set is divided into a training set and a test set. The training set is used to train the proposed fault detection model, and the test set is used for testing. Compared with other parameter optimization algorithms, the proposed method has lower FNR and FPR in the electric pitch system fault detection of the wind turbine generator set.

摘要

当使用极限随机森林检测双馈风力发电机组的电动变桨系统故障模型时,很难优化故障模型参数。因此,提出了一种基于改进灰狼算法优化的极限随机森林(IGWO-ERF)来解决上述问题。首先,IGWO-ERF引入余弦模型,将线性变化的收敛因子α进行非线性化处理,以平衡算法的全局探索能力和局部开发能力。然后,在算法迭代后期,α狼基于透镜成像学习策略生成其镜像狼,以增加种群多样性,防止种群陷入局部最优。风力发电机组电动变桨系统故障检测方法将变桨系统的发电机功率设置为主状态参数。首先,利用皮尔逊相关系数法剔除与电动变桨系统发电机功率相关性低的特征。然后,根据随机森林(RF)特征的重要性对剩余特征进行排序。最后,选择前N个特征构建电动变桨系统故障数据集。该数据集被划分为训练集和测试集。训练集用于训练所提出的故障检测模型,测试集用于测试。与其他参数优化算法相比,该方法在风力发电机组电动变桨系统故障检测中具有更低的漏检率(FNR)和误检率(FPR)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d79/8469195/6532773b7a0b/sensors-21-06215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验