Suppr超能文献

利用深度学习时代的心电图识别高血糖症。

Hyperglycemia Identification Using ECG in Deep Learning Era.

机构信息

Department of Computer Engineering, San Jose State University, San Jose, CA 95119, USA.

出版信息

Sensors (Basel). 2021 Sep 18;21(18):6263. doi: 10.3390/s21186263.

Abstract

A growing number of smart wearable biosensors are operating in the medical IoT environment and those that capture physiological signals have received special attention. Electrocardiogram (ECG) is one of the physiological signals used in the cardiovascular and medical fields that has encouraged researchers to discover new non-invasive methods to diagnose hyperglycemia as a personal variable. Over the years, researchers have proposed different techniques to detect hyperglycemia using ECG. In this paper, we propose a novel deep learning architecture that can identify hyperglycemia using heartbeats from ECG signals. In addition, we introduce a new fiducial feature extraction technique that improves the performance of the deep learning classifier. We evaluate the proposed method with ECG data from 1119 different subjects to assess the efficiency of hyperglycemia detection of the proposed work. The result indicates that the proposed algorithm is effective in detecting hyperglycemia with a 94.53% area under the curve (AUC), 87.57% sensitivity, and 85.04% specificity. That performance represents an relative improvement of 53% versus the best model found in the literature. The high sensitivity and specificity achieved by the 10-layer deep neural network proposed in this work provide an excellent indication that ECG possesses intrinsic information that can indicate the level of blood glucose concentration.

摘要

越来越多的智能可穿戴生物传感器在医疗物联网环境中运行,其中那些能够捕获生理信号的传感器受到了特别关注。心电图(ECG)是心血管和医疗领域中使用的生理信号之一,这促使研究人员发现了新的非侵入性方法来诊断高血糖症作为个体变量。多年来,研究人员已经提出了许多不同的技术,通过心电图(ECG)来检测高血糖症。在本文中,我们提出了一种新的深度学习架构,它可以通过心电图信号中的心跳来识别高血糖症。此外,我们引入了一种新的基准特征提取技术,该技术提高了深度学习分类器的性能。我们使用来自 1119 个不同对象的心电图数据来评估所提出方法的效率,以评估所提出工作对高血糖症检测的效率。结果表明,所提出的算法在检测高血糖症方面非常有效,曲线下面积(AUC)为 94.53%,灵敏度为 87.57%,特异性为 85.04%。与文献中发现的最佳模型相比,该算法的性能提高了 53%。这项工作中提出的 10 层深度神经网络的高灵敏度和特异性极好地表明心电图具有内在信息,可以指示血糖浓度水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90c2/8472987/779dd7f4939e/sensors-21-06263-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验