Suppr超能文献

基于深度学习的楼梯清洁和维护可重构机器人。

sTetro-Deep Learning Powered Staircase Cleaning and Maintenance Reconfigurable Robot.

机构信息

Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.

Department of Electrical Engineering, Delhi Technological University, Delhi 110042, India.

出版信息

Sensors (Basel). 2021 Sep 18;21(18):6279. doi: 10.3390/s21186279.

Abstract

Staircase cleaning is a crucial and time-consuming task for maintenance of multistory apartments and commercial buildings. There are many commercially available autonomous cleaning robots in the market for building maintenance, but few of them are designed for staircase cleaning. A key challenge for automating staircase cleaning robots involves the design of Environmental Perception Systems (EPS), which assist the robot in determining and navigating staircases. This system also recognizes obstacles and debris for safe navigation and efficient cleaning while climbing the staircase. This work proposes an operational framework leveraging the vision based EPS for the modular re-configurable maintenance robot, called sTetro. The proposed system uses an SSD MobileNet real-time object detection model to recognize staircases, obstacles and debris. Furthermore, the model filters out false detection of staircases by fusion of depth information through the use of a MobileNet and SVM. The system uses a contour detection algorithm to localize the first step of the staircase and depth clustering scheme for obstacle and debris localization. The framework has been deployed on the sTetro robot using the Jetson Nano hardware from NVIDIA and tested with multistory staircases. The experimental results show that the entire framework takes an average of 310 ms to run and achieves an accuracy of 94.32% for staircase recognition tasks and 93.81% accuracy for obstacle and debris detection tasks during real operation of the robot.

摘要

楼梯清洁对于多层公寓和商业建筑的维护是一项至关重要且耗时的任务。市场上有许多商用的自主清洁机器人可用于建筑维护,但其中很少有专门用于楼梯清洁的机器人。自动化楼梯清洁机器人的一个关键挑战涉及环境感知系统 (EPS) 的设计,该系统可帮助机器人确定并导航楼梯。该系统还可识别障碍物和碎片,以实现安全导航和在楼梯爬升时的高效清洁。本工作提出了一个利用基于视觉的 EPS 的操作框架,用于模块化可重构维护机器人 sTetro。所提出的系统使用 SSD MobileNet 实时目标检测模型来识别楼梯、障碍物和碎片。此外,该模型通过使用 MobileNet 和 SVM 融合深度信息来过滤楼梯的误检测。该系统使用轮廓检测算法来定位楼梯的第一步,并使用深度聚类方案来定位障碍物和碎片。该框架已在 NVIDIA 的 Jetson Nano 硬件上部署到 sTetro 机器人上,并在多层楼梯上进行了测试。实验结果表明,整个框架的平均运行时间为 310 毫秒,在机器人的实际运行中,楼梯识别任务的准确率为 94.32%,障碍物和碎片检测任务的准确率为 93.81%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验