Suppr超能文献

利用深度神经网络整合序列和本体信息来预测代谢途径成员。

Predicting metabolic pathway membership with deep neural networks by integrating sequential and ontology information.

机构信息

University of Delaware, Computer and Information Sciences, 101 Smith Hall, Newark, 19716, DE, US.

出版信息

BMC Genomics. 2021 Sep 27;22(Suppl 4):691. doi: 10.1186/s12864-021-07629-8.

Abstract

BACKGROUND

Inference of protein's membership in metabolic pathways has become an important task in functional annotation of protein. The membership information can provide valuable context to the basic functional annotation and also aid reconstruction of incomplete pathways. Previous works have shown success of inference by using various similarity measures of gene ontology.

RESULTS

In this work, we set out to explore integrating ontology and sequential information to further improve the accuracy. Specifically, we developed a neural network model with an architecture tailored to facilitate the integration of features from different sources. Furthermore, we built models that are able to perform predictions from pathway-centric or protein-centric perspectives. We tested the classifiers using 5-fold cross validation for all metabolic pathways reported in KEGG database.

CONCLUSIONS

The testing results demonstrate that by integrating ontology and sequential information with a tailored architecture our deep neural network method outperforms the existing methods significantly in the pathway-centric mode, and in the protein-centric mode, our method either outperforms or performs comparably with a suite of existing GO term based semantic similarity methods.

摘要

背景

在蛋白质功能注释中,推断蛋白质在代谢途径中的成员身份已成为一项重要任务。成员信息可以为基本功能注释提供有价值的上下文,并且有助于重建不完整的途径。以前的工作已经表明,通过使用各种基因本体相似性度量来进行推断是成功的。

结果

在这项工作中,我们着手探索整合本体和序列信息以进一步提高准确性。具体来说,我们开发了一种具有专门架构的神经网络模型,以促进来自不同来源的特征的集成。此外,我们构建了能够从途径中心或蛋白质中心的角度进行预测的模型。我们使用 KEGG 数据库中报告的所有代谢途径的 5 折交叉验证来测试分类器。

结论

测试结果表明,通过整合本体和序列信息以及专门的架构,我们的深度神经网络方法在途径中心模式下明显优于现有方法,并且在蛋白质中心模式下,我们的方法要么优于或与一系列现有的基于 GO 术语的语义相似性方法相当。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fc0/8474704/ead89db7d8bd/12864_2021_7629_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验