Suppr超能文献

强化学习算法模型在燃气轮机气路故障智能诊断中的应用。

Application of Reinforcement Learning Algorithm Model in Gas Path Fault Intelligent Diagnosis of Gas Turbine.

机构信息

School of Robot Engineering, Yangtze Normal University, Chongqing 408100, China.

出版信息

Comput Intell Neurosci. 2021 Sep 17;2021:3897077. doi: 10.1155/2021/3897077. eCollection 2021.

Abstract

Gas turbine is widely used because of its advantages of fast start and stop, no pollution, and high thermal efficiency. However, the working environment of high temperature, high pressure, and high speed makes the gas turbine prone to failure. The traditional gas path fault intelligent diagnosis scheme of the gas turbine has the problems of poor control effect and low scheduling accuracy. Experiment studies the application of neural network and reinforcement learning algorithm in gas path fault intelligent diagnosis of the gas turbine. The accurate control of fault diagnosis planning is realized from gas path fault diagnosis, daily maintenance, service condition monitoring, power utilization rate, and other aspects of the gas turbine. The reinforcement learning model can realize the intelligent diagnosis and record of gas path fault of the gas turbine, to achieve diversified analysis and intelligent diagnosis scheme. Through neural network algorithm and deep learning technology, the whole process monitoring of the gas turbine is realized, and the failure rate of the gas turbine in the working process is reduced. The experimental results show that, compared with the thermal fault diagnosis method and the fault diagnosis method of the electric percussion drill, using thermal imaging, the gas turbine gas path fault intelligent diagnosis model based on the reinforcement learning algorithm can complete the data information in the process of real-time data transmission. The quantified conversion and processing of the system has the advantages of higher control accuracy and faster response speed, which can effectively improve the diagnostic efficiency and accuracy.

摘要

燃气轮机由于具有起动、停止迅速,环境污染小,效率高等优点而得到广泛应用。但是,高温、高压、高速的工作环境使得燃气轮机容易发生故障。传统的燃气轮机气路故障智能诊断方案存在控制效果差、调度精度低等问题。实验研究了神经网络和强化学习算法在燃气轮机气路故障智能诊断中的应用。从燃气轮机的气路故障诊断、日常维护、运行状态监测、用电效率等方面,实现了故障诊断规划的精确控制。强化学习模型可以实现燃气轮机气路故障的智能诊断和记录,实现多元化分析和智能诊断方案。通过神经网络算法和深度学习技术,实现燃气轮机的全过程监测,降低燃气轮机在工作过程中的故障率。实验结果表明,与热故障诊断方法和电锤故障诊断方法相比,使用热成像技术,基于强化学习算法的燃气轮机气路故障智能诊断模型能够完成实时数据传输过程中的数据信息。对系统的量化转换和处理具有控制精度高、响应速度快的优点,能够有效提高诊断效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecf6/8464420/c9b0deb6200b/CIN2021-3897077.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验