Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.
Proteins. 2022 May;90(5):1054-1080. doi: 10.1002/prot.26250. Epub 2021 Oct 9.
Understanding the molecular evolution of the SARS-CoV-2 virus as it continues to spread in communities around the globe is important for mitigation and future pandemic preparedness. Three-dimensional structures of SARS-CoV-2 proteins and those of other coronavirusess archived in the Protein Data Bank were used to analyze viral proteome evolution during the first 6 months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48 000 viral isolates revealed how each one of 29 viral proteins have undergone amino acid changes. Catalytic residues in active sites and binding residues in protein-protein interfaces showed modest, but significant, numbers of substitutions, highlighting the mutational robustness of the viral proteome. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for potential drug discovery targets and the four structural proteins that comprise the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and protein-protein and protein-nucleic acid interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
了解 SARS-CoV-2 病毒在全球社区继续传播时的分子进化对于减轻疾病和为未来的大流行做准备非常重要。利用蛋白质数据库中存档的 SARS-CoV-2 蛋白和其他冠状病毒的三维结构,分析了 COVID-19 大流行前 6 个月期间病毒蛋白质组的进化。对 48000 多个病毒分离株中观察到的氨基酸变化的空间位置、化学性质以及结构和能量影响进行分析,揭示了 29 种病毒蛋白中的每一种是如何发生氨基酸变化的。活性部位的催化残基和蛋白-蛋白界面的结合残基发生了适度但显著的取代,突出了病毒蛋白质组的突变稳健性。能学计算表明,取代对蛋白质组热力学稳定性的影响遵循普遍的双高斯分布。针对潜在的药物发现靶点和构成病毒粒子的四个结构蛋白,详细介绍了可能影响蛋白质结构、酶活性以及蛋白-蛋白和蛋白-核酸界面的取代。从三维角度描述病毒的进化提供了对病毒蛋白功能的可检验的见解,应该有助于基于结构的药物发现工作以及有潜力产生耐药性的氨基酸取代的前瞻性识别。