Suppr超能文献

通过反激活机制控制根瘤农杆菌的运动性。

Motility control through an anti-activation mechanism in Agrobacterium tumefaciens.

机构信息

Indiana University, Bloomington, Indiana, USA.

California State University, Dominguez Hills, Carson, California, USA.

出版信息

Mol Microbiol. 2021 Nov;116(5):1281-1297. doi: 10.1111/mmi.14823. Epub 2021 Oct 19.

Abstract

Many bacteria can migrate from a free-living, planktonic state to an attached, biofilm existence. One factor regulating this transition in the facultative plant pathogen Agrobacterium tumefaciens is the ExoR-ChvG-ChvI system. Periplasmic ExoR regulates the activity of the ChvG-ChvI two-component system in response to environmental stress, most notably low pH. ChvI impacts hundreds of genes, including those required for type VI secretion, virulence, biofilm formation, and flagellar motility. Previous studies revealed that activated ChvG-ChvI represses expression of most of class II and class III flagellar biogenesis genes, but not the master motility regulator genes visN, visR, and rem. In this study, we characterized the integration of the ExoR-ChvG-ChvI and VisNR-Rem pathways. We isolated motile suppressors of the non-motile ΔexoR mutant and thereby identified the previously unannotated mirA gene encoding a 76 amino acid protein. We report that the MirA protein interacts directly with the Rem DNA-binding domain, sequestering Rem and preventing motility gene activation. The ChvG-ChvI pathway activates mirA expression and elevated mirA is sufficient to block motility. This study reveals how the ExoR-ChvG-ChvI pathway prevents flagellar motility in A. tumefaciens. MirA is also conserved among other members of the Rhizobiales suggesting similar mechanisms of motility regulation.

摘要

许多细菌可以从自由生活的浮游状态转变为附着的生物膜状态。在兼性植物病原体根瘤农杆菌中,调节这种转变的一个因素是 ExoR-ChvG-ChvI 系统。周质 ExoR 响应环境应激,特别是低 pH 值,调节 ChvG-ChvI 双组分系统的活性。ChvI 影响数百个基因,包括那些需要用于类型 VI 分泌、毒力、生物膜形成和鞭毛运动的基因。先前的研究表明,激活的 ChvG-ChvI 抑制了 II 类和 III 类鞭毛生物发生基因的大部分表达,但不抑制主运动调节剂基因 visN、visR 和 rem。在这项研究中,我们描述了 ExoR-ChvG-ChvI 和 VisNR-Rem 途径的整合。我们分离了非运动性 ΔexoR 突变体的运动性抑制子,从而鉴定了以前未注释的 mirA 基因,该基因编码一个 76 个氨基酸的蛋白质。我们报告说,MirA 蛋白与 Rem DNA 结合结构域直接相互作用,隔离 Rem 并阻止运动基因的激活。ChvG-ChvI 途径激活 mirA 表达,升高的 mirA 足以阻止运动。这项研究揭示了 ExoR-ChvG-ChvI 途径如何防止根瘤农杆菌中的鞭毛运动。MirA 在 Rhizobiales 的其他成员中也保守,表明存在类似的运动调节机制。

相似文献

1
Motility control through an anti-activation mechanism in Agrobacterium tumefaciens.
Mol Microbiol. 2021 Nov;116(5):1281-1297. doi: 10.1111/mmi.14823. Epub 2021 Oct 19.
2
Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens.
PLoS Pathog. 2012 Sep;8(9):e1002938. doi: 10.1371/journal.ppat.1002938. Epub 2012 Sep 27.
5
Agrobacterium tumefaciens ExoR represses succinoglycan biosynthesis and is required for biofilm formation and motility.
Microbiology (Reading). 2010 Sep;156(Pt 9):2670-2681. doi: 10.1099/mic.0.039032-0. Epub 2010 Jun 24.
10
A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid.
Proc Natl Acad Sci U S A. 2002 Sep 17;99(19):12369-74. doi: 10.1073/pnas.192439499. Epub 2002 Sep 6.

引用本文的文献

2
Metagenomic insights into the response of soil microbial communities to pathogenic .
Front Plant Sci. 2024 Feb 16;15:1325141. doi: 10.3389/fpls.2024.1325141. eCollection 2024.
3
The motility and chemosensory systems of Rhizobium leguminosarum, their role in symbiosis, and link to PTS regulation.
Environ Microbiol. 2024 Feb;26(2):e16570. doi: 10.1111/1462-2920.16570. Epub 2024 Jan 12.
4
An Inducible T7 Polymerase System for High-Level Protein Expression in Diverse Gram-Negative Bacteria.
Microbiol Resour Announc. 2023 Feb 16;12(2):e0111922. doi: 10.1128/mra.01119-22. Epub 2023 Jan 16.
5
A large-scale genetic screen identifies genes essential for motility in Agrobacterium fabrum.
PLoS One. 2023 Jan 4;18(1):e0279936. doi: 10.1371/journal.pone.0279936. eCollection 2023.

本文引用的文献

1
An organelle-tethering mechanism couples flagellation to cell division in bacteria.
Dev Cell. 2021 Mar 8;56(5):657-670.e4. doi: 10.1016/j.devcel.2021.01.013. Epub 2021 Feb 17.
2
Multiple Flagellin Proteins Have Distinct and Synergistic Roles in Agrobacterium tumefaciens Motility.
J Bacteriol. 2018 Nov 6;200(23). doi: 10.1128/JB.00327-18. Print 2018 Dec 1.
4
Involvement of Two-Component Signaling on Bacterial Motility and Biofilm Development.
J Bacteriol. 2017 Aug 22;199(18). doi: 10.1128/JB.00259-17. Print 2017 Sep 15.
5
Coupling of Flagellar Gene Expression with Assembly in Salmonella enterica.
Methods Mol Biol. 2017;1593:47-71. doi: 10.1007/978-1-4939-6927-2_4.
6
Improving protein disorder prediction by deep bidirectional long short-term memory recurrent neural networks.
Bioinformatics. 2017 Mar 1;33(5):685-692. doi: 10.1093/bioinformatics/btw678.
7
Regulation of Flagellar Gene Expression in Bacteria.
Biochemistry (Mosc). 2015 Nov;80(11):1447-56. doi: 10.1134/S000629791511005X.
9
Small RNA Deep-Sequencing Analyses Reveal a New Regulator of Virulence in Agrobacterium fabrum C58.
Mol Plant Microbe Interact. 2015 May;28(5):580-9. doi: 10.1094/MPMI-12-14-0380-FI.
10
The aspartate-less receiver (ALR) domains: distribution, structure and function.
PLoS Pathog. 2015 Apr 13;11(4):e1004795. doi: 10.1371/journal.ppat.1004795. eCollection 2015 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验