Peng Hongyun, Wang Dong, Fu Shaohai
Jiangsu Engineering Research Center For Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, School of Textile Science and Engineering, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China.
ACS Appl Mater Interfaces. 2021 Oct 13;13(40):47549-47559. doi: 10.1021/acsami.1c12292. Epub 2021 Sep 29.
Although solar-driven seawater desalination affords a highly promising strategy for freshwater-electricity harvesting by employing abundant solar energy and ocean resources, the inevitable salt crystallization on the surface of evaporators causes a sharp decline in evaporation performance and the poor electricity output of most coupled inflexible evaporation-power generation devices limits the scalability and durability in long-time practical applications. Herein, we report a simple programmable nanofluidic photothermal textile umbrella by asymmetrically depositing MoS nanosheets on cotton textiles, which allows for controllable gravity-assisted edge-preferential salt crystallization/harvesting via self-manipulated saline solution transportation in the wet umbrella and simultaneous drenching-induced electrokinetic voltage generation (0.535 V)/storage (charging a capacitor to 12.2 V) in over 120 h of the nonstop solar desalination process (with 7.5 wt % saline solution). Notably, the morphology and salt crystallization areas can be managed via the programmed umbrellas. Moreover, the asymmetric textile umbrellas possess admirable sewable features for large-scale integration to enhance the evaporation and voltage output efficiency. Importantly, this textile umbrella evaporator shows excellent output stability and durability even after 40 times of washing. This work may pave a scalable way to design programmable solar evaporators for sustainable seawater desalination with scalabilities of zero-waste discharge, valuable resource recovery, and energy harvesting.
尽管太阳能驱动的海水淡化通过利用丰富的太阳能和海洋资源为淡水发电提供了一种极具前景的策略,但蒸发器表面不可避免的盐结晶会导致蒸发性能急剧下降,并且大多数耦合的刚性蒸发发电装置的低电量输出限制了其在长期实际应用中的可扩展性和耐久性。在此,我们报道了一种简单的可编程纳米流体光热纺织伞,通过在棉纺织品上不对称沉积MoS纳米片制成,它允许通过湿伞中自驱动的盐溶液传输实现可控的重力辅助边缘优先盐结晶/收集,并在超过120小时的不间断太阳能淡化过程(使用7.5 wt%的盐溶液)中同时实现淋溶诱导的动电电压产生(0.535 V)/存储(将电容器充电至12.2 V)。值得注意的是,通过编程的伞可以控制其形态和盐结晶区域。此外,不对称纺织伞具有令人钦佩的可缝合特性,便于大规模集成,以提高蒸发和电压输出效率。重要的是,这种纺织伞蒸发器即使在洗涤40次后仍表现出出色的输出稳定性和耐久性。这项工作可能为设计可编程太阳能蒸发器铺平一条可扩展的道路,以实现可持续的海水淡化,具有零废物排放、宝贵资源回收和能量收集的可扩展性。