Suppr超能文献

具有增强光热管理和特定位置盐结晶功能的蜂窝结构织物可实现可持续的太阳能蒸汽产生。

Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation.

作者信息

Gao Can, Zhu Jingjing, Li Jiecong, Zhou Buguang, Liu Xiaojing, Chen Yue, Zhang Zhi, Guo Jiansheng

机构信息

Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.

Key Laboratory of Polymer Chemistry and Physics (MOE), Department of Materials Science and Engineering, Peking University, Beijing 100871, China.

出版信息

J Colloid Interface Sci. 2022 Aug;619:322-330. doi: 10.1016/j.jcis.2022.03.122. Epub 2022 Mar 29.

Abstract

The emerging of solar-driven interfacial evaporation provides new opportunities to alleviate the shortage of fresh water resource. Nevertheless, in practical solar desalination, salt precipitation will lead to the decrease of evaporation rate due to reduced light absorption and blocked evaporation channels of evaporator. It still remains a challenge to eliminate salt accumulation and simultaneously maintain high-efficient evaporation. In this work, a solar evaporator was prepared based on reduced graphene oxide and chitosan coated honeycomb-structured fabric (rCHF). The rCHF showed a high light absorbance of 97.2% due to enhanced light trapping of the honeycomb structure and ultra-low thermal conductivity of 0.044 W m K. Furthermore, the temperature gradient generated inside the honeycomb unit can induce the Marangoni effect, which led to the site-specific salt crystallization on rCHF in seawater evaporation. As a result, the rCHF realized an excellent solar evaporation rate of 2.02 kg mh under one sun irradiation (1 kW m). The site-specific salt crystallization on the surface of rCHF ensured stable evaporation even in 20% brine, and the isolated salt can be removed by natural dissolution owing to the excellent hydrophilicity of rCHF. This work provides a new perspective for the design of solar evaporator for practical solar seawater desalination.

摘要

太阳能驱动的界面蒸发的出现为缓解淡水资源短缺提供了新的机遇。然而,在实际的太阳能海水淡化中,盐沉淀会由于光吸收减少和蒸发器蒸发通道受阻而导致蒸发速率下降。消除盐积累并同时保持高效蒸发仍然是一个挑战。在这项工作中,基于还原氧化石墨烯和壳聚糖包覆的蜂窝结构织物(rCHF)制备了一种太阳能蒸发器。由于蜂窝结构增强了光捕获以及超低的热导率0.044 W m K,rCHF显示出97.2%的高光吸收率。此外,蜂窝单元内部产生的温度梯度可诱发马兰戈尼效应,这导致在海水蒸发过程中rCHF上出现特定位置的盐结晶。结果,rCHF在一个太阳辐照(1 kW m)下实现了2.02 kg m h的优异太阳能蒸发速率。rCHF表面特定位置的盐结晶确保了即使在20%的盐水中也能稳定蒸发,并且由于rCHF具有优异的亲水性,分离出的盐可以通过自然溶解去除。这项工作为实际太阳能海水淡化的太阳能蒸发器设计提供了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验