Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France.
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
Geobiology. 2022 Jan;20(1):137-155. doi: 10.1111/gbi.12471. Epub 2021 Sep 30.
In silica-rich hot spring environments, internally laminated, digitate sinter deposits are often interpreted as bio-mediated structures. The organic components of microbial communities (cell surfaces, sheaths and extracellular polymeric substances) can act as templates for silica precipitation, therefore influencing digitate sinter morphogenesis. In addition to biologic surface-templating effects, various microenvironmental factors (hydrodynamics, local pH and fluctuating wind patterns) can also influence silica precipitation, and therefore the morphology of resulting digitate sinters. Digitate sinter morphology thus depends on the dynamic interplay between microenvironmentally driven silica precipitation and microbial growth, but the relative contributions of both factors are a topic of continuing research. Here we present a detailed study of digitate silica sinters in distal, low-temperature regimes of the El Tatio geothermal field, Chile. This high-altitude geothermal field is extremely arid and windy, and has one of the highest silica precipitation rates found in the world. We find that digitate silica sinters at El Tatio always accrete into the prevailing eastward wind direction and exhibit laminar growth patterns coinciding with day-night cycles of wind- and thermally driven evaporation and rewetting. Subaerial parts of digitate sinters lack preserved organics and sinter textures that would indicate past microbial colonization, while filamentous cyanobacteria with resistant, silicified sheaths only inhabit subaqueous cavities that crosscut the primary laminations. We conclude that, although fragile biofilms of extremophile micro-organisms may have initially been present and templated silica precipitation at the tips of these digitate sinters, the saltation of sand grains and precipitation of silica by recurrent wind- and thermally driven environmental forcing at El Tatio are important, if not dominant factors shaping the morphology of these digitate structures. Our study sheds light on the relative contributions of biogenic and abiogenic factors in sinter formation in geothermal systems, with geobiological implications for the cautious interpretation of stromatolite-like features in ancient silica deposits on Earth and Mars.
在富含硅的温泉环境中,内部层状、指状的烧结沉积物通常被解释为生物介导的结构。微生物群落的有机成分(细胞表面、鞘和细胞外聚合物)可以作为硅沉淀的模板,从而影响指状烧结的形态发生。除了生物表面模板效应外,各种微环境因素(水动力、局部 pH 值和波动的风向模式)也会影响硅的沉淀,从而影响指状烧结的形态。因此,指状烧结的形态取决于微环境驱动的硅沉淀和微生物生长之间的动态相互作用,但这两个因素的相对贡献是一个持续研究的课题。在这里,我们对智利埃尔泰蒂奥地热田远端低温区的指状硅烧结物进行了详细研究。这个高海拔地热田极其干旱多风,是世界上硅沉淀率最高的地区之一。我们发现,埃尔泰蒂奥的指状硅烧结物总是向盛行的东风方向附着,并呈现出与风驱动和热驱动蒸发和再润湿昼夜循环一致的层状生长模式。指状烧结物的地上部分缺乏可指示过去微生物定殖的保存有机物和烧结纹理,而只有在横切主要层理的水下洞穴中才能发现具有抗性、硅化鞘的丝状蓝细菌。我们的结论是,尽管极端微生物的脆弱生物膜最初可能存在,并在这些指状烧结物的尖端模板化硅沉淀,但在埃尔泰蒂奥,沙粒的跳跃和反复的风和热驱动的环境强迫引起的硅沉淀是很重要的,如果不是主要的因素,影响这些指状结构的形态。我们的研究阐明了生物和非生物因素在热液系统中烧结形成中的相对贡献,对地球和火星古代硅质沉积物中类似叠层石特征的生物成因解释具有重要的地质生物学意义。