文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

以 SARS-CoV-2 刺突蛋白为例的蛋白质中的局部拓扑和分支热点。

Local topology and bifurcation hot-spots in proteins with SARS-CoV-2 spike protein as an example.

机构信息

Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), Beijing Institute of Technology, Beijing, China.

School of Physics, Beijing Institute of Technology, Beijing, China.

出版信息

PLoS One. 2021 Sep 30;16(9):e0257886. doi: 10.1371/journal.pone.0257886. eCollection 2021.


DOI:10.1371/journal.pone.0257886
PMID:34591922
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8483365/
Abstract

Novel topological methods are introduced to protein research. The aim is to identify hot-spot sites where a bifurcation can alter the local topology of the protein backbone. Since the shape of a protein is intimately related to its biological function, a substitution that causes a bifurcation should have an enhanced capacity to change the protein's function. The methodology applies to any protein but it is developed with the SARS-CoV-2 spike protein as a timely example. First, topological criteria are introduced to identify and classify potential bifurcation hot-spot sites along the protein backbone. Then, the expected outcome of asubstitution, if it occurs, is estimated for a general class of hot-spots, using a comparative analysis of the surrounding backbone segments. The analysis combines the statistics of structurally commensurate amino acid fragments in the Protein Data Bank with general stereochemical considerations. It is observed that the notorious D614G substitution of the spike protein is a good example of a bifurcation hot-spot. A number of topologically similar examples are then analyzed in detail, some of them are even better candidates for a bifurcation hot-spot than D614G. The local topology of the more recently observed N501Y substitution is also inspected, and it is found that this site is proximal to a different kind of local topology changing bifurcation.

摘要

引入了新的拓扑方法来研究蛋白质。目的是识别热点位置,在这些位置分叉可以改变蛋白质主链的局部拓扑结构。由于蛋白质的形状与其生物功能密切相关,因此引起分叉的取代应该具有增强改变蛋白质功能的能力。该方法适用于任何蛋白质,但它是针对 SARS-CoV-2 刺突蛋白开发的一个及时的例子。首先,引入拓扑标准来识别和分类蛋白质主链上潜在的分叉热点位置。然后,使用周围主链片段的比较分析,对一般类别的热点位置的取代的预期结果进行估计。该分析结合了蛋白质数据库中结构相容的氨基酸片段的统计数据和一般立体化学考虑因素。观察到刺突蛋白中臭名昭著的 D614G 取代是分叉热点的一个很好的例子。然后详细分析了许多拓扑相似的例子,其中一些甚至比 D614G 更适合分叉热点。还检查了最近观察到的 N501Y 取代的局部拓扑结构,发现该位置靠近另一种改变局部拓扑结构的分叉。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/8092ace39b6f/pone.0257886.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/91dfdfb25a69/pone.0257886.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/dcf7dd6e6b6a/pone.0257886.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/84334e79b86b/pone.0257886.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/e90f203b10cc/pone.0257886.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/59e480495dfb/pone.0257886.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/dc764eb4a361/pone.0257886.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/55e49b986afa/pone.0257886.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/ef66ff3a2f06/pone.0257886.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/4a680627cd7b/pone.0257886.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/b85f6f2c7677/pone.0257886.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/237d40c1aa69/pone.0257886.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/14c31027f848/pone.0257886.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/0f693d44473a/pone.0257886.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/8092ace39b6f/pone.0257886.g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/91dfdfb25a69/pone.0257886.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/dcf7dd6e6b6a/pone.0257886.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/84334e79b86b/pone.0257886.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/e90f203b10cc/pone.0257886.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/59e480495dfb/pone.0257886.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/dc764eb4a361/pone.0257886.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/55e49b986afa/pone.0257886.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/ef66ff3a2f06/pone.0257886.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/4a680627cd7b/pone.0257886.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/b85f6f2c7677/pone.0257886.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/237d40c1aa69/pone.0257886.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/14c31027f848/pone.0257886.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/0f693d44473a/pone.0257886.g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d12d/8483365/8092ace39b6f/pone.0257886.g014.jpg

相似文献

[1]
Local topology and bifurcation hot-spots in proteins with SARS-CoV-2 spike protein as an example.

PLoS One. 2021

[2]
Modelling conformational state dynamics and its role on infection for SARS-CoV-2 Spike protein variants.

PLoS Comput Biol. 2021-8

[3]
Impact of Genetic Variability in ACE2 Expression on the Evolutionary Dynamics of SARS-CoV-2 Spike D614G Mutation.

Genes (Basel). 2020-12-24

[4]
In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs.

J Med Virol. 2020-5-17

[5]
Questions concerning the proximal origin of SARS-CoV-2.

J Med Virol. 2021-3

[6]
Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity.

Int J Infect Dis. 2021-2

[7]
Concurrent mutations in RNA-dependent RNA polymerase and spike protein emerged as the epidemiologically most successful SARS-CoV-2 variant.

Sci Rep. 2021-7-1

[8]
Structural basis of severe acute respiratory syndrome coronavirus 2 infection.

Curr Opin HIV AIDS. 2021-1

[9]
A Gapless, Unambiguous RNA Metagenome-Assembled Genome Sequence of a Unique SARS-CoV-2 Variant Encoding Spike S813I and ORF1a A859V Substitutions.

OMICS. 2021-2

[10]
The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types.

Elife. 2021-2-11

引用本文的文献

[1]
Biomimetic virus-like mesoporous silica nanoparticles improved cellular internalization for co-delivery of antigen and agonist to enhance Tumor immunotherapy.

Drug Deliv. 2023-12

本文引用的文献

[1]
Covid-19: What have we learnt about the new variant in the UK?

BMJ. 2020-12-23

[2]
Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms.

Science. 2020-10-15

[3]
Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant.

Cell. 2020-9-15

[4]
Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19.

Acta Pharmacol Sin. 2020-8-3

[5]
Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus.

Cell. 2020-7-3

[6]
The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway.

Virus Res. 2020-6-23

[7]
A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2.

Science. 2020-6-22

[8]
Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane.

J Phys Chem B. 2020-7-6

[9]
A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells.

Mol Cell. 2020-5-1

[10]
A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.

Nature. 2020-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索