Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait.
Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait.
Int J Infect Dis. 2021 Feb;103:611-616. doi: 10.1016/j.ijid.2020.10.033. Epub 2020 Oct 17.
The coronavirus disease 2019 (COVID-19) pandemic has caused an exponential rise in death rates and hospitalizations. The aim of this study was to characterize the D614G substitution in the severe acute respiratory syndome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S protein), which may affect viral infectivity.
The effect of D614G substitution on the structure and thermodynamic stability of the S protein was analyzed with use of DynaMut and SCooP. HDOCK and PRODIGY were used to model furin protease binding to the S protein RRAR cleavage site and calculate binding affinities. Molecular dynamics simulations were used to predict the S protein apo structure, the S protein-furin complex structure, and the free binding energy of the complex.
The D614G substitution in the G clade of SARS-CoV-2 strains introduced structural mobility and decreased the thermal stability of the S protein (ΔΔG = -0.086 kcal mol). The substitution resulted in stronger binding affinity (K = 1.6 × 10) for furin, which may enhance S protein cleavage. The results were corroborated by molecular dynamics simulations demonstrating higher binding energy of furin and the S protein D614G mutant (-61.9 kcal mol compared with -56.78 kcal mol for wild-type S protein).
The D614G substitution in the G clade induced flexibility of the S protein, resulting in increased furin binding, which may enhance S protein cleavage and infiltration of host cells. Therefore, the SARS-CoV-2 D614G substitution may result in a more virulent strain.
2019 年冠状病毒病(COVID-19)大流行导致死亡率和住院率呈指数级上升。本研究旨在研究严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)刺突糖蛋白(S 蛋白)中的 D614G 取代,该取代可能影响病毒的感染力。
使用 DynaMut 和 SCooP 分析 D614G 取代对 S 蛋白结构和热力学稳定性的影响。使用 HDOCK 和 PRODIGY 对弗林蛋白酶与 S 蛋白 RRAR 切割位点的结合进行建模,并计算结合亲和力。使用分子动力学模拟预测 S 蛋白无辅基结构、S 蛋白-弗林蛋白酶复合物结构以及复合物的自由结合能。
SARS-CoV-2 株的 G 谱系中的 D614G 取代引入了结构的可动性,并降低了 S 蛋白的热稳定性(ΔΔG=-0.086 kcal/mol)。该取代导致弗林蛋白酶的结合亲和力更强(K=1.6×10),这可能增强 S 蛋白的切割。分子动力学模拟结果也证实了这一点,表明弗林蛋白酶和 S 蛋白 D614G 突变体的结合能更高(与野生型 S 蛋白相比为-61.9 kcal/mol 相比为-56.78 kcal/mol)。
G 谱系中的 D614G 取代使 S 蛋白的灵活性增加,导致弗林蛋白酶结合增加,从而可能增强 S 蛋白的切割和宿主细胞的渗透。因此,SARS-CoV-2 的 D614G 取代可能导致更具毒性的菌株。