Suppr超能文献

超越单一指标:运用网络分析探究支撑生态系统多功能性的生态机制。

Beyond the single index: Investigating ecological mechanisms underpinning ecosystem multifunctionality with network analysis.

作者信息

Siwicka Ewa, Gladstone-Gallagher Rebecca, Hewitt Judi E, Thrush Simon F

机构信息

Institute of Marine Science University of Auckland Auckland New Zealand.

Tvärminne Zoological Station University of Helsinki Hanko Finland.

出版信息

Ecol Evol. 2021 Aug 24;11(18):12401-12412. doi: 10.1002/ece3.7987. eCollection 2021 Sep.

Abstract

Ecosystems simultaneously deliver multiple functions that relate to both the activities of resident species and environmental conditions. One of the biggest challenges in multifunctionality assessment is balancing analytical simplicity with ecosystem complexity. As an alternative to index-based approaches, we introduce a multivariate network analysis that uses network theory to assess multifunctionality in terms of the relationships between species' functional traits, environmental characteristics, and functions. We tested our approach in a complex and heterogeneous ecosystem, marine intertidal sandflats. We considered eight ecosystem function, five macrofaunal functional trait groups derived from 36 species, and four environmental characteristics. The indicators of ecosystem functions included the standing stock of primary producers, oxygen production, benthic oxygen consumption, DIN (ammonium and NOx efflux) and phosphate release from the sediments, denitrification, and organic matter degradation at the sediment surface. Trait clusters included functional groups of species that shared combinations of biological traits that affect ecosystem function: small mobile top 2 cm dwellers, suspension feeders, deep-dwelling worms, hard-bodied surface dwellers, and tube-forming worms. Environmental characteristics included sediment organic matter, %mud, %shell hash, and %sediment water content. Our results visualize and quantify how multiple ecosystem elements are connected and contribute to the provision of functions. Small mobile top 2 cm dwellers (among trait clusters) and %mud (among environmental characteristics) were the best predictor for multiple functions. Detailed knowledge of multifunctionality relationships can significantly increase our understanding of the real-world complexity of natural ecosystems. Multivariate network analysis, as a standalone method or applied alongside already existing single index multifunctionality methods, provides means to advance our understanding of how environmental change and biodiversity loss can influence ecosystem performance across multiple dimensions of functionality. Embedding such a detailed yet holistic multifunctionality assessment in environmental decision-making will support the assessment of multiple ecosystem services and social-ecological values.

摘要

生态系统同时提供多种与本地物种活动和环境条件相关的功能。多功能性评估面临的最大挑战之一是如何在分析的简易性与生态系统复杂性之间取得平衡。作为基于指数方法的替代方案,我们引入了一种多元网络分析方法,该方法利用网络理论,从物种功能性状、环境特征和功能之间的关系来评估多功能性。我们在一个复杂且异质的生态系统——海洋潮间带沙滩中测试了我们的方法。我们考虑了八种生态系统功能、从36个物种中得出的五个大型底栖动物功能性状组以及四个环境特征。生态系统功能指标包括初级生产者的现存生物量、氧气产生量、底栖生物的氧气消耗量、沉积物中的溶解无机氮(铵和氮氧化物外流)和磷酸盐释放量、反硝化作用以及沉积物表面的有机物降解。性状集群包括具有共同影响生态系统功能的生物学性状组合的物种功能组:2厘米深度内的小型活动表层栖息者、悬浮取食者、深层栖息蠕虫、硬体表层栖息者和管栖蠕虫。环境特征包括沉积物有机质、泥质百分比、贝壳碎片百分比和沉积物含水量。我们的结果可视化并量化了多个生态系统要素是如何相互联系并对功能的提供做出贡献的。2厘米深度内的小型活动表层栖息者(在性状集群中)和泥质百分比(在环境特征中)是多种功能的最佳预测指标。对多功能性关系的详细了解能够显著增进我们对自然生态系统现实世界复杂性的理解。多元网络分析,作为一种独立方法或与现有的单一指数多功能性方法一起应用,为推进我们对环境变化和生物多样性丧失如何在多个功能维度上影响生态系统性能的理解提供了手段。将这种详细而全面的多功能性评估纳入环境决策,将有助于对多种生态系统服务和社会生态价值进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8522/8462174/d2fbbec6cdb0/ECE3-11-12401-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验