Li Xu, Xu Hao, Yang Chengjie, Zhang Cen, Zhou Shuang-Yong
Institute for High Energy Physics and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev Lett. 2021 Sep 17;127(12):121601. doi: 10.1103/PhysRevLett.127.121601.
We discuss the general method for obtaining full positivity bounds on multifield effective field theories (EFTs). While the leading order forward positivity bounds are commonly derived from the elastic scattering of two (superposed) external states, we show that, for a generic EFT containing three or more low-energy modes, this approach only gives incomplete bounds. We then identify the allowed parameter space as the dual to a spectrahedron, constructed from crossing symmetries of the amplitude, and show that finding the optimal bounds for a given number of modes is equivalent to a geometric problem: finding the extremal rays of a spectrahedron. We show how this is done analytically for simple cases and numerically formulated as semidefinite programming (SDP) problems for more complicated cases. We demonstrate this approach with a number of well-motivated examples in particle physics and cosmology, including EFTs of scalars, vectors, fermions, and gravitons. In all these cases, we find that the SDP approach leads to results that either improve the previous ones or are completely new. We also find that the SDP approach is numerically much more efficient.
我们讨论了在多场有效场论(EFT)中获得完全正性边界的一般方法。虽然领先阶的正向正性边界通常是从两个(叠加的)外部态的弹性散射推导出来的,但我们表明,对于包含三个或更多低能模式的一般EFT,这种方法只能给出不完整的边界。然后,我们将允许的参数空间确定为从振幅的交叉对称性构建的谱面体的对偶,并表明为给定数量的模式找到最优边界等同于一个几何问题:找到谱面体的极值射线。我们展示了在简单情况下如何通过解析方法完成这一过程,而在更复杂的情况下则通过数值方法将其表述为半定规划(SDP)问题。我们用粒子物理学和宇宙学中的一些动机充分的例子来演示这种方法,包括标量、矢量、费米子和引力子的EFT。在所有这些情况下,我们发现SDP方法得出的结果要么改进了以前的结果,要么是全新的。我们还发现SDP方法在数值上效率更高。