van Thiel T C, Brzezicki W, Autieri C, Hortensius J R, Afanasiev D, Gauquelin N, Jannis D, Janssen N, Groenendijk D J, Fatermans J, Van Aert S, Verbeeck J, Cuoco M, Caviglia A D
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628CJ Delft, Netherlands.
International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland.
Phys Rev Lett. 2021 Sep 17;127(12):127202. doi: 10.1103/PhysRevLett.127.127202.
In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO_{3}, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO_{3}, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO_{2}/SrO interface configuration, leading to excess charge being pinned near the LaAlO_{3}/SrRuO_{3} interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO_{3}. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
在氧化物异质结构中,不同的材料被整合到一个单一的人工晶体中,导致异质界面处的反演对称性被打破。一个显著的例子是极性和非极性材料之间的界面,其中价态不连续性导致了原本无法获得的电荷和自旋态。这种方法为发现大量在体相组分中不存在的非常规特性铺平了道路。然而,在关联氧化物中控制电子波函数的几何结构仍然是一个悬而未决的挑战。在这里,我们创建了由超薄SrRuO₃(一种具有动量空间贝里曲率源的巡游铁磁体)和LaAlO₃(一种极性宽带隙绝缘体)组成的异质结构。透射电子显微镜揭示了一个原子级尖锐的LaO/RuO₂/SrO界面结构,导致过量电荷被钉扎在LaAlO₃/SrRuO₃界面附近。我们通过磁光表征、理论计算和输运测量证明,实空间电荷重构驱动了能带结构中拓扑电荷的重新组织,从而改变了SrRuO₃中的动量空间贝里曲率。我们的结果说明了如何通过设计氧化物界面处的电荷不连续性来操纵氧化物的拓扑和磁性特征。