Graduate Program in Chemistry, State University of Paraiba, Rua Baraúnas, 351, Bairro Universitário, Bodocongó, Campina Grande, Paraiba, 58429-500, Brazil.
Department of Chemistry Engineering, Federal University of Pernambuco, Av. da Arquitetura, Cidade Universitária, Recife, Pernambuco, 50740-540, Brazil.
Spectrochim Acta A Mol Biomol Spectrosc. 2022 Feb 5;266:120399. doi: 10.1016/j.saa.2021.120399. Epub 2021 Sep 14.
The use of vibrational spectroscopy, such as near infrared (NIR) and Raman, combined with multivariate analysis methods to analyze agricultural products are promising for investigating genetically modified organisms (GMO). In Brazil, cotton is grown under humid tropical conditions and is highly affected by pests and diseases, requiring the use of large amounts of phytosanitary chemicals. To avoid the use of those pesticides, genetic improvement can be carried out to produce species tolerant to herbicides, resistant to fungi and insects, or even to provide greater productivity and better quality. Even with these advantages, it is necessary to manage and limit the contact of transgenic species with native ones, avoiding possible contamination or even extinction of conventional species. The identification of the presence of GMOs is based on complex DNA-based analysis, which is usually laborious, expensive, time-consuming, destructive, and generally unavailable. In the present study, a new methodology to identify GMOs using partial least squares discriminant analysis (PLS-DA) on NIR and Raman data is proposed to distinguish conventional and transgenic cotton seed genotypes, providing classification errors for prediction set of 2.23% for NIR and 0.0% for Raman.
利用振动光谱技术,如近红外(NIR)和拉曼光谱,结合多元分析方法来分析农产品,对于研究转基因生物(GMO)具有很大的应用潜力。在巴西,棉花种植在潮湿的热带地区,容易受到病虫害的影响,因此需要大量使用植物保护化学品。为了避免使用这些农药,可以进行基因改良,生产出对除草剂具有耐受性、对真菌和昆虫具有抗性的品种,甚至可以提高生产力和改善质量。即使具有这些优势,也需要管理和限制转基因物种与本地物种的接触,以避免可能的污染甚至传统物种的灭绝。对 GMO 的存在进行鉴定是基于复杂的基于 DNA 的分析,这通常是费力、昂贵、耗时、具有破坏性的,并且通常无法实现。在本研究中,提出了一种使用近红外和拉曼数据的偏最小二乘判别分析(PLS-DA)来识别 GMO 的新方法,以区分常规和转基因棉花种子基因型,对预测集的分类错误率分别为 2.23%(近红外)和 0.0%(拉曼)。