Suppr超能文献

化学计量学策略在近红外高光谱成像分析中的应用:棉花品种的分类。

Chemometric strategies for near infrared hyperspectral imaging analysis: classification of cotton seed genotypes.

机构信息

State University of Paraiba, Bairro Universitário, Rua Baraúnas, 351 Campina Grande, Paraiba, 58429-500, Brazil.

Brazilian Agricultural Research Corporation, Embrapa Cotton, Rua Osvaldo Cruz, 1143, Bairro Centenário, Campina Grande, Paraiba, 58428-095, Brazil.

出版信息

Anal Methods. 2021 Nov 4;13(42):5065-5074. doi: 10.1039/d1ay01076j.

Abstract

Hyperspectral images have been increasingly employed in the agricultural sector for seed classification for different purposes. In the present paper we propose a new methodology based on HSI in the near infrared range (HSI-NIR) to distinguish conventional from transgenic cotton seeds. Three different chemometric approaches, one pixel-based and two object-based, using partial least squares discriminant analysis (PLS-DA) were built and their performances were compared considering the pros and cons of each approach. Specificity and sensitivity values ranged from 0.78-0.92 and 0.62-0.93, respectively, for the different approaches.

摘要

高光谱图像在农业领域中越来越多地被用于不同目的的种子分类。在本文中,我们提出了一种基于近红外范围(HSI-NIR)高光谱图像的新方法,用于区分常规和转基因棉花种子。使用偏最小二乘判别分析(PLS-DA)构建了三种不同的基于化学计量学的方法,一种基于像素,两种基于对象,并比较了它们的性能,考虑了每种方法的优缺点。不同方法的特异性和敏感性值分别为 0.78-0.92 和 0.62-0.93。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验