Suppr超能文献

利用介电谱和支持向量回归定量测定生乳体细胞数。

Quantitatively determining the somatic cell count of raw milk using dielectric spectra and support vector regression.

机构信息

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.

College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Shaanxi Research Center of Agricultural Equipment Engineering Technology, Yangling, Shaanxi, 712100, China.

出版信息

J Dairy Sci. 2022 Jan;105(1):772-781. doi: 10.3168/jds.2021-20828. Epub 2021 Sep 30.

Abstract

To investigate the potential of dielectric spectroscopy in quantitatively determining the somatic cell count (SCC) of raw milk, the dielectric spectra of 301 raw milk samples at different SCC were collected using coaxial probe technology in the frequency range of 20 to 4,500 MHz. Standard normal variate, Mahalanobis distance, and joint x-y distances sample division were used to pretreat spectra, detect outliers, and divide samples, respectively. Principal component analysis and variable importance in projection (VIP) methods were used to reduce data dimension and select characteristic variables (CVR), respectively. The full spectra, 16 principal components obtained by principal component analysis, and 86 CVR selected by VIP were used as inputs, respectively, to establish different support vector regression models. The results showed that the nonlinear support vector regression models based on the full spectra and selected CVR using VIP had the best prediction performance, with the standard error of prediction and residual predictive deviation of 0.19 log SCC/mL and 2.37, respectively. The study provided a novel method for online or in situ detection of the SCC of raw milk in production, processing, and consumption.

摘要

为了研究介电谱在定量测定原料奶体细胞计数(SCC)方面的潜力,使用同轴探头技术在 20 至 4500 MHz 的频率范围内收集了 301 个不同 SCC 的原料奶样本的介电谱。标准正态变量、马哈拉诺比斯距离和联合 x-y 距离样品分割分别用于预处理光谱、检测异常值和分割样品。主成分分析和变量重要性投影(VIP)方法分别用于降低数据维度和选择特征变量(CVR)。全谱、主成分分析得到的 16 个主成分和 VIP 选择的 86 个 CVR 分别作为输入,建立不同的支持向量回归模型。结果表明,基于全谱和 VIP 选择的 CVR 的非线性支持向量回归模型具有最佳的预测性能,预测标准误差和残差预测偏差分别为 0.19 log SCC/mL 和 2.37。该研究为生产、加工和消费过程中原料奶 SCC 的在线或原位检测提供了一种新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验