Suppr超能文献

利用自由文本成像医嘱录入的人工智能进行回顾性评估,以促进联邦要求的临床决策支持。

Retrospective Evaluation of Artificial Intelligence Leveraging Free-Text Imaging Order Entry to Facilitate Federally Required Clinical Decision Support.

机构信息

Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia.

Department of Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia.

出版信息

J Am Coll Radiol. 2021 Nov;18(11):1476-1484. doi: 10.1016/j.jacr.2021.08.021. Epub 2021 Oct 1.

Abstract

OBJECTIVE

The Protecting Access to Medicare Act mandates clinical decision support (CDS) at imaging order entry, necessitating the use of structured indications to map CDS scores. We evaluated the performance of a commercially available artificial intelligence (AI) tool leveraging free-text order entry to facilitate provider selection of the necessary structured indications.

METHODS

Our institution implemented an AI tool offering predicted structured indications based upon the ordering provider's entry of a free-text reason for examination. Providers remained able to order via the traditional direct search for structured indications. Alternatively, they could take the new free-text-AI approach allowing them to select from AI-predicted indications, perform additional direct searches, indicate no matching indication, or exit CDS workflow. We hypothesized the free-text-AI approach would be elected more often and the AI tool would be successful in facilitating selection of structured indications. We reviewed advanced imaging orders (n = 40,053) for the first 3 months (February to May 2020) since implementation.

RESULTS

Providers were more likely (P < .001) to choose the free-text-AI approach (23,580; 58.9%) to order entry over direct search for structured indications (16,473; 41.1%). The AI tool yielded alerts with predicted indications in 91.7% (n = 21,631) of orders with free text. Ultimately, providers chose AI-predicted indications in 57.7% (n = 12,490) of cases in which they were offered by the tool.

DISCUSSION

Providers significantly more often elected the new free-text-AI approach to order entry for CDS, suggesting provider preference over the traditional approach. The AI tool commonly predicted indications acceptable to ordering providers.

摘要

目的

《保护医疗保险法》要求在影像医嘱录入时使用临床决策支持(CDS),这就需要使用结构化的适应证来映射 CDS 评分。我们评估了一种商业上可用的人工智能(AI)工具的性能,该工具利用自由文本医嘱录入来方便提供者选择必要的结构化适应证。

方法

我们的机构实施了一种人工智能工具,该工具根据医嘱录入者输入的检查原因提供预测的结构化适应证。提供者仍然可以通过传统的直接搜索结构化适应证来进行医嘱录入。或者,他们可以采用新的自由文本-AI 方法,从 AI 预测的适应证中进行选择,进行额外的直接搜索,选择无匹配适应证,或退出 CDS 工作流程。我们假设自由文本-AI 方法的选择频率更高,并且 AI 工具能够成功地促进结构化适应证的选择。我们回顾了实施后的前 3 个月(2020 年 2 月至 5 月)的高级影像医嘱(n=40053)。

结果

提供者更倾向于(P<0.001)选择自由文本-AI 方法(23580;58.9%)来进行医嘱录入,而不是直接搜索结构化适应证(16473;41.1%)。对于有自由文本的 91.7%(n=21631)的医嘱,AI 工具产生了具有预测适应证的警报。最终,在提供者提供的工具中,提供者选择了 AI 预测的适应证,占 57.7%(n=12490)。

讨论

提供者更倾向于选择新的自由文本-AI 方法来进行 CDS 医嘱录入,这表明他们更倾向于这种方法而不是传统方法。AI 工具通常可以预测出可接受的适应证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验