Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Puebla de Zaragoza, 72453, Puebla, Mexico.
Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501, Monterrey, 64849, Nuevo León, Mexico.
Water Res. 2021 Oct 15;205:117709. doi: 10.1016/j.watres.2021.117709. Epub 2021 Sep 25.
This study aimed to determine the reliability of the double-clustering method to understand the spatial association and distribution of major and minor constituents in the groundwater of an arid endorheic basin in central Mexico (Comarca Lagunera Region). The results of the double-clustering approach were compared with well-known spatial statistics such as spatial autocorrelations (Moran index) and the local indicator of spatial association (LISA). Fifty-five groundwater samples were collected from diverse wells within the basin, and the major ions, metalloids, and trace elements were determined. Overall, the double-clustering analysis was an effective tool for identifying lithogenic/anthropogenic processes occurring in the basin and for establishing zones with high or low abundance of major ions and trace elements, even where processes affecting the groundwater quality were spatially dispersed. Although 89% of the samples showed As higher than the threshold value of 10 μg/L proposed by the World Health Organization for drinking water, both the double-clustering and LISA analyses identified As hotspots in the alluvial aquifer, where the extraction of deeper and warmer groundwater might promote the concomitant release of the metalloids As, Sb, and Ge and the trace elements V and W. Similarly, both statistical analyses identified mountainous sectors where the weathering of silicates and carbonates plays a key role in the abundance of HCO, Ga, and Ba. However, the LISA analysis failed to identify hotspots of carbonate-derived elements such as Ca, Mg, Sr, and U and silicate-derived elements such as Ca, Mg, K, Sr, Rb, Cs, Pb, Ni, and Y. Otherwise, the double-clustering analysis clearly defined high- and low-concentration zones for all these elements in the study region. Unlike the LISA analysis, the double-clustering approach was also successful in determining alluvial areas with high concentrations of Si and Ti and areas where the concentrations of Na, Cl, SO, NO, B, Li, Cu, Re, and Se in groundwater were elevated, increasing the groundwater salinity. Overall, this study demonstrated that the double-clustering is an easy-to-apply approach, capable of visualizing disperse zones where specific anthropogenic processes may threaten the groundwater quality.
本研究旨在确定双聚类方法的可靠性,以了解墨西哥中部干旱内流盆地(拉古纳地区)地下水主要和次要成分的空间关联和分布。将双聚类方法的结果与空间自相关(莫兰指数)和局部空间关联指标(LISA)等著名空间统计方法进行了比较。从盆地内的不同井中采集了 55 个地下水样本,测定了主要离子、类金属和微量元素。总体而言,双聚类分析是一种有效的工具,可用于识别盆地中发生的岩石成因/人为过程,并确定主要离子和微量元素丰度高或低的区域,即使影响地下水质量的过程在空间上分散。尽管 89%的样本显示砷含量高于世界卫生组织规定的饮用水 10μg/L 阈值,但双聚类和 LISA 分析都确定了冲积含水层中的砷热点,在那里,更深、更温暖的地下水的提取可能会促进砷、锑和锗以及钒和钨等微量元素的同时释放。同样,这两种统计分析都确定了山区,在那里硅酸盐和碳酸盐的风化在 HCO3、Ga 和 Ba 的丰度中起着关键作用。然而,LISA 分析未能识别出碳酸盐衍生元素(如 Ca、Mg、Sr 和 U)和硅酸盐衍生元素(如 Ca、Mg、K、Sr、Rb、Cs、Pb、Ni 和 Y)的热点。另一方面,双聚类分析在研究区域内明确定义了所有这些元素的高浓度和低浓度区。与 LISA 分析不同的是,双聚类方法还成功地确定了高浓度 Si 和 Ti 的冲积区,以及地下水 Na、Cl、SO4、NO3、B、Li、Cu、Re 和 Se 浓度升高的地区,从而增加了地下水的盐度。总体而言,本研究表明,双聚类是一种易于应用的方法,能够可视化分散区域,特定的人为过程可能会威胁地下水质量。