Suppr超能文献

将 Pt 纳米颗粒不对称地包覆在磁性硅纳米球上,用于靶向细胞捕获和治疗。

Asymmetrically coating Pt nanoparticles on magnetic silica nanospheres for target cell capture and therapy.

机构信息

College of Sciences, Northeastern University, Shenyang, 110004, China.

College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.

出版信息

Mikrochim Acta. 2021 Oct 2;188(11):361. doi: 10.1007/s00604-021-05009-3.

Abstract

A Janus cargo has been developed via the combination of magnetic mesoporous silica (MMS) with asymmetric decoration of Pt nanoparticles (PtNPs). Mesoporous morphology of MMS provides plenty of space for loading photosensitizers and targeting agents; the magnetic feature endows the as-formed nanospheres with satisfactory isolation function in removal of low abundant target cells. The excellent catalytic ability of PtNPs can effectively alleviate the hypoxia condition of tumor microenvironment via the decomposition of hydrogen peroxide (HO), as well as an O-drived nanomotor for highly efficient drug release. Using CCRF-CEM as the model target cell, the Janus cargo is demonstrated to possess significantly improved performance in cell capture and photodynamic therapy. Specially, owing to the patchy Pt decoration, the loaded photosensitizers exhibit a more efficient release behavior. More importantly, asymmetric O-emission from one side of the nanocargo acts as a driving force, which could effectively accelerate the motion ability of cargo in cell media, thus leading to an enhanced therapeutic effect compared with the traditionally symmetric nanocargo. This Janus cargo would offer a new paradigm to design highly efficient drug carrier for gaining an improved photodynamic therapy in hypoxic cancer cells.

摘要

通过将磁性介孔硅(MMS)与 Pt 纳米粒子(PtNPs)的不对称修饰相结合,开发了一种类 Janus 载体。MMS 的介孔形态为负载光敏剂和靶向剂提供了充足的空间;磁性使所形成的纳米球具有令人满意的分离功能,可用于去除低丰度的靶细胞。PtNPs 的优异催化能力可以通过分解过氧化氢(HO)有效缓解肿瘤微环境的缺氧状态,同时作为 O 驱动的纳米马达,实现高效的药物释放。以 CCRF-CEM 为模型靶细胞,证明类 Janus 载体在细胞捕获和光动力治疗方面具有显著改善的性能。特别地,由于 Pt 的不规则修饰,负载的光敏剂表现出更有效的释放行为。更重要的是,纳米载体一侧的不对称 O 发射充当驱动力,可有效加速载体在细胞培养基中的运动能力,从而与传统的对称纳米载体相比,产生增强的治疗效果。这种类 Janus 载体为设计高效药物载体提供了新范例,可在缺氧癌细胞中获得改善的光动力治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验