Suppr超能文献

使用定制的FP增长实现加速SPADE方法

Acceleration of the SPADE Method Using a Custom-Tailored FP-Growth Implementation.

作者信息

Porrmann Florian, Pilz Sarah, Stella Alessandra, Kleinjohann Alexander, Denker Michael, Hagemeyer Jens, Rückert Ulrich

机构信息

Cognitronics and Sensor Systems, CITEC, Bielefeld University, Bielefeld, Germany.

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Center, Jülich, Germany.

出版信息

Front Neuroinform. 2021 Sep 16;15:723406. doi: 10.3389/fninf.2021.723406. eCollection 2021.

Abstract

The (spatio-temporal pike ttern etection and valuation) method was developed to find reoccurring spatio-temporal patterns in neuronal spike activity (parallel spike trains). However, depending on the number of spike trains and the length of recording, this method can exhibit long runtimes. Based on a realistic benchmark data set, we identified that the combination of pattern mining (using the algorithm) and the result filtering account for 85-90% of the method's total runtime. Therefore, in this paper, we propose a customized implementation tailored to the requirements of , which significantly accelerates pattern mining and result filtering. Our version allows for parallel and distributed execution, and due to the improvements made, an execution on heterogeneous and low-power embedded devices is now also possible. The implementation has been evaluated using a traditional workstation based on an Intel Broadwell Xeon E5-1650 v4 as a baseline. Furthermore, the heterogeneous microserver platform RECS|Box has been used for evaluating the implementation on two HiSilicon Hi1616 (Kunpeng 916), an Intel Coffee Lake-ER Xeon E-2276ME, an Intel Broadwell Xeon D-D1577, and three NVIDIA Tegra devices (Jetson AGX Xavier, Jetson Xavier NX, and Jetson TX2). Depending on the platform, our implementation is between 27 and 200 times faster than the original implementation. At the same time, the energy consumption was reduced by up to two orders of magnitude.

摘要

(时空尖峰模式检测与评估)方法的开发旨在发现神经元尖峰活动(并行尖峰序列)中反复出现的时空模式。然而,根据尖峰序列的数量和记录长度,该方法可能会有较长的运行时间。基于一个真实的基准数据集,我们发现模式挖掘(使用该算法)和结果过滤的组合占该方法总运行时间的85 - 90%。因此,在本文中,我们提出了一种针对该需求定制的实现方式,它显著加速了模式挖掘和结果过滤。我们的版本允许并行和分布式执行,并且由于所做的改进,现在也能够在异构和低功耗嵌入式设备上执行。该实现已使用基于英特尔至强E5-1650 v4的传统工作站作为基线进行评估。此外,异构微服务器平台RECS|Box已用于在两台海思Hi1616(鲲鹏916)、一颗英特尔酷睿湖-ER至强E-2276ME、一颗英特尔至强D-D1577以及三款英伟达Tegra设备(Jetson AGX Xavier、Jetson Xavier NX和Jetson TX2)上评估该实现。根据平台不同,我们的实现比原始实现快27至200倍。同时,能耗降低了多达两个数量级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5223/8483730/3b7c9d019c6e/fninf-15-723406-g0001.jpg

相似文献

1
Acceleration of the SPADE Method Using a Custom-Tailored FP-Growth Implementation.
Front Neuroinform. 2021 Sep 16;15:723406. doi: 10.3389/fninf.2021.723406. eCollection 2021.
3
Lightweight Fruit-Detection Algorithm for Edge Computing Applications.
Front Plant Sci. 2021 Oct 13;12:740936. doi: 10.3389/fpls.2021.740936. eCollection 2021.
4
Performance Evaluation Method for Intelligent Computing Components for Space Applications.
Sensors (Basel). 2023 Dec 27;24(1):145. doi: 10.3390/s24010145.
5
Detection and Evaluation of Spatio-Temporal Spike Patterns in Massively Parallel Spike Train Data with SPADE.
Front Comput Neurosci. 2017 May 24;11:41. doi: 10.3389/fncom.2017.00041. eCollection 2017.
6
3d-SPADE: Significance evaluation of spatio-temporal patterns of various temporal extents.
Biosystems. 2019 Nov;185:104022. doi: 10.1016/j.biosystems.2019.104022. Epub 2019 Aug 23.
7
A comparative analysis of near-infrared image colorization methods for low-power NVIDIA Jetson embedded systems.
Front Neurorobot. 2023 Apr 24;17:1143032. doi: 10.3389/fnbot.2023.1143032. eCollection 2023.
8
Run Your 3D Object Detector on NVIDIA Jetson Platforms:A Benchmark Analysis.
Sensors (Basel). 2023 Apr 15;23(8):4005. doi: 10.3390/s23084005.
10
A Vehicle-Edge-Cloud Framework for Computational Analysis of a Fine-Tuned Deep Learning Model.
Sensors (Basel). 2024 Mar 25;24(7):2080. doi: 10.3390/s24072080.

引用本文的文献

1
Comparing Surrogates to Evaluate Precisely Timed Higher-Order Spike Correlations.
eNeuro. 2022 Jun 9;9(3). doi: 10.1523/ENEURO.0505-21.2022. Print 2022 May-Jun.

本文引用的文献

1
Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex.
Science. 2020 Dec 4;370(6521):1191-1196. doi: 10.1126/science.abd7435.
2
Discovering Precise Temporal Patterns in Large-Scale Neural Recordings through Robust and Interpretable Time Warping.
Neuron. 2020 Jan 22;105(2):246-259.e8. doi: 10.1016/j.neuron.2019.10.020. Epub 2019 Nov 27.
3
Bayesian inference of neuronal assemblies.
PLoS Comput Biol. 2019 Oct 31;15(10):e1007481. doi: 10.1371/journal.pcbi.1007481. eCollection 2019 Oct.
4
3d-SPADE: Significance evaluation of spatio-temporal patterns of various temporal extents.
Biosystems. 2019 Nov;185:104022. doi: 10.1016/j.biosystems.2019.104022. Epub 2019 Aug 23.
6
Unsupervised Detection of Cell-Assembly Sequences by Similarity-Based Clustering.
Front Neuroinform. 2019 May 31;13:39. doi: 10.3389/fninf.2019.00039. eCollection 2019.
7
Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data.
Front Neuroinform. 2018 Dec 19;12:90. doi: 10.3389/fninf.2018.00090. eCollection 2018.
9
Methods for identification of spike patterns in massively parallel spike trains.
Biol Cybern. 2018 Apr;112(1-2):57-80. doi: 10.1007/s00422-018-0755-0. Epub 2018 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验