Suppr超能文献

可重现的神经网络模拟:基于网络活动数据层面的模型验证统计方法

Reproducible Neural Network Simulations: Statistical Methods for Model Validation on the Level of Network Activity Data.

作者信息

Gutzen Robin, von Papen Michael, Trensch Guido, Quaglio Pietro, Grün Sonja, Denker Michael

机构信息

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-Institut Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany.

Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany.

出版信息

Front Neuroinform. 2018 Dec 19;12:90. doi: 10.3389/fninf.2018.00090. eCollection 2018.

Abstract

Computational neuroscience relies on simulations of neural network models to bridge the gap between the theory of neural networks and the experimentally observed activity dynamics in the brain. The rigorous validation of simulation results against reference data is thus an indispensable part of any simulation workflow. Moreover, the availability of different simulation environments and levels of model description require also validation of model implementations against each other to evaluate their equivalence. Despite rapid advances in the formalized description of models, data, and analysis workflows, there is no accepted consensus regarding the terminology and practical implementation of validation workflows in the context of neural simulations. This situation prevents the generic, unbiased comparison between published models, which is a key element of enhancing reproducibility of computational research in neuroscience. In this study, we argue for the establishment of standardized statistical test metrics that enable the quantitative validation of network models on the level of the population dynamics. Despite the importance of validating the elementary components of a simulation, such as single cell dynamics, building networks from validated building blocks does not entail the validity of the simulation on the network scale. Therefore, we introduce a corresponding set of validation tests and present an example workflow that practically demonstrates the iterative model validation of a spiking neural network model against its reproduction on the SpiNNaker neuromorphic hardware system. We formally implement the workflow using a generic Python library that we introduce for validation tests on neural network activity data. Together with the companion study (Trensch et al., 2018), the work presents a consistent definition, formalization, and implementation of the verification and validation process for neural network simulations.

摘要

计算神经科学依靠神经网络模型的模拟来弥合神经网络理论与大脑中实验观察到的活动动态之间的差距。因此,对照参考数据对模拟结果进行严格验证是任何模拟工作流程中不可或缺的一部分。此外,不同模拟环境和模型描述水平的存在还要求对模型实现相互进行验证,以评估它们的等效性。尽管在模型、数据和分析工作流程的形式化描述方面取得了快速进展,但在神经模拟背景下,关于验证工作流程的术语和实际实施尚无公认的共识。这种情况妨碍了已发表模型之间的通用、无偏比较,而这是提高神经科学计算研究可重复性的关键要素。在本研究中,我们主张建立标准化的统计测试指标,以便能够在群体动态水平上对网络模型进行定量验证。尽管验证模拟的基本组件(如单细胞动态)很重要,但用经过验证的构建块构建网络并不意味着模拟在网络规模上是有效的。因此,我们引入了相应的一组验证测试,并展示了一个示例工作流程,实际演示了针对在SpiNNaker神经形态硬件系统上的再现,对脉冲神经网络模型进行迭代模型验证。我们使用一个通用的Python库正式实现了该工作流程,该库是我们为神经网络活动数据的验证测试而引入的。与配套研究(Trensch等人,2018年)一起,这项工作给出了神经网络模拟验证和确认过程的一致定义、形式化和实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5c0/6305903/de020d549972/fninf-12-00090-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验