Ohara Mirai, Hameed A Shahul, Kubota Kei, Katogi Akihiro, Chihara Kuniko, Hosaka Tomooki, Komaba Shinichi
Department of Applied Chemistry, Tokyo University of Science 1-3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
ESICB, Kyoto University 1-30 Goryo-Ohara, Nishikyo-ku Kyoto 615-8245 Japan.
Chem Sci. 2021 Aug 12;12(37):12383-12390. doi: 10.1039/d1sc03725k. eCollection 2021 Sep 29.
K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic materials are interesting because of their high working voltage and good structural stability which dictates the cycle life. In this study, a potassium vanadium oxide phosphate, K(VO)(VO)(PO)(PO), has been investigated as a 4 V class positive electrode material for non-aqueous KIBs. The material is synthesized through pyrolysis of a single metal-organic molecular precursor, K[(VOHPO)(CO)] at 500 °C in air. The material demonstrates a reversible extraction/insertion of 2.7 mol of potassium from/into the structure at a discharge voltage of ∼4.03 V K. and powder X-ray diffraction analyses reveal that the material undergoes reversible K extraction/insertion during charge/discharge a two-phase reaction mechanism. Despite the extraction/insertion of large potassium ions, the material demonstrates an insignificant volume change of ∼1.2% during charge/discharge resulting in excellent cycling stability without capacity degradation over 100 cycles in a highly concentrated electrolyte cell. Robustness of the polyanionic framework is proved from identical XRD patterns of the pristine and cycled electrodes (after 100 cycles).
钾离子电池(KIBs)因其丰富的资源和钾的电化学特性,在大规模电能存储方面具有广阔前景。在钾离子电池的正极材料中,钒基聚阴离子材料因其高工作电压和良好的结构稳定性(决定了循环寿命)而备受关注。在本研究中,一种磷酸钾钒氧化物K(VO)(VO)(PO)(PO)被作为用于非水钾离子电池的4V级正极材料进行了研究。该材料通过在空气中500℃热解单一金属有机分子前驱体K[(VOHPO)(CO)]合成。该材料在约4.03V K的放电电压下展示了2.7摩尔钾从结构中可逆地脱出/嵌入,粉末X射线衍射分析表明该材料在充放电过程中经历了可逆的钾脱出/嵌入——一种两相反应机制。尽管有大量钾离子的脱出/嵌入,但该材料在充放电过程中显示出约1.2%的微小体积变化,在高浓度电解质电池中经过100次循环后仍具有出色的循环稳定性且无容量衰减。原始电极和循环电极(100次循环后)相同的X射线衍射图谱证明了聚阴离子骨架的稳定性。