Amoah Joseph Noble, Seo Yong Weon
Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841 Republic of Korea.
3 Biotech. 2021 Oct;11(10):440. doi: 10.1007/s13205-021-02991-6. Epub 2021 Sep 19.
The study aimed to decipher the impact of multiple drought stress on wheat. To that effect, Geumgangmil, PL 337 (1AL.1RS), PL 371 (1BL.1RS), and PL 257 (1DL.1RS) seedlings were subjected to four treatments: G1 (control), G2 (stressed thrice with rewatering), G3 (stressed twice with rewatering), and G4 (single stressful event). The findings provided a comprehensive framework of drought-hardening effect at physiological, biochemical, and gene expression levels of drought-stressed wheat genotypes. The treatments resulted in differentially higher levels of malondialdehyde (MDA), hydrogen peroxide (HO), soluble sugar, and proline accumulation, and reduced relative water content (RWC) in wheat plants. Photosynthetic pigment (chlorophyll and carotenoid) levels, the membrane stability index (MSI), and shoot biomass decreased dramatically and differently across genotypes, particularly in G3 and G4 compared to G2. The activity of antioxidant enzymes [ascorbate peroxidase (APX), superoxide dismutase (SOD), and catalase (CAT)] increased with the duration and severity of drought treatment. Furthermore, the relative expression of , , , , , , , , and genes was higher in G2 than in other treatments. Drought hardening increased drought tolerance and adaptability in plants under G2 by enhancing growth and activating defensive mechanisms at the physio-biochemical and molecular levels. The findings of the study indicated that early drought stress exposure-induced acclimation (hardening), which enhanced tolerance to subsequent drought stress in wheat seedlings. The findings of this study will be useful in initiating a breeding program to develop wheat cultivars with improved drought tolerance.
The online version contains supplementary material available at 10.1007/s13205-021-02991-6.
本研究旨在解读多重干旱胁迫对小麦的影响。为此,对金刚麦、PL 337(1AL.1RS)、PL 371(1BL.1RS)和PL 257(1DL.1RS)幼苗进行了四种处理:G1(对照)、G2(三次干旱胁迫并复水)、G3(两次干旱胁迫并复水)和G4(单次胁迫事件)。研究结果在生理、生化和基因表达水平上为干旱胁迫小麦基因型的干旱硬化效应提供了一个全面的框架。这些处理导致小麦植株中丙二醛(MDA)、过氧化氢(HO)、可溶性糖和脯氨酸积累水平不同程度升高,相对含水量(RWC)降低。光合色素(叶绿素和类胡萝卜素)水平、膜稳定性指数(MSI)和地上部生物量在不同基因型中显著下降且存在差异,特别是与G2相比,G3和G4中的下降更为明显。抗氧化酶[抗坏血酸过氧化物酶(APX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)]的活性随着干旱处理的持续时间和严重程度而增加。此外,G2中 、 、 、 、 、 、 、 和 基因的相对表达高于其他处理。干旱硬化通过在生理生化和分子水平上促进生长并激活防御机制,提高了G2条件下植物的耐旱性和适应性。研究结果表明,早期干旱胁迫暴露诱导的驯化(硬化)增强了小麦幼苗对后续干旱胁迫的耐受性。本研究结果将有助于启动一个育种计划,以培育耐旱性更强的小麦品种。
在线版本包含可在10.1007/s13205-021-02991-6获取的补充材料。