Burmeister Hans-Christoph, Constapel Manfred
Fraunhofer Center for Maritime Logistics and Services, Hamburg, Germany.
Front Robot AI. 2021 Sep 16;8:739013. doi: 10.3389/frobt.2021.739013. eCollection 2021.
In this survey, results from an investigation on collision avoidance and path planning methods developed in recent research are provided. In particular, existing methods based on Artificial Intelligence, data-driven methods based on Machine Learning, and other Data Science approaches are investigated to provide a comprehensive overview of maritime collision avoidance techniques applicable to Maritime Autonomous Surface Ships. Relevant aspects of those methods and approaches are summarized and put into suitable perspectives. As autonomous systems are expected to operate alongside or in place of conventionally manned vessels, they must comply with the COLREGs for robust decision-support/-making. Thus, the survey specifically covers how COLREGs are addressed by the investigated methods and approaches. A conclusion regarding their utilization in industrial implementations is drawn.
在本次调查中,提供了对近期研究中开发的避碰和路径规划方法的调查结果。具体而言,研究了基于人工智能的现有方法、基于机器学习的数据驱动方法以及其他数据科学方法,以全面概述适用于海上自主水面舰艇的海上避碰技术。对这些方法和途径的相关方面进行了总结,并置于适当的视角。由于自主系统预计将与传统 manned 船只并肩运行或取而代之,它们必须遵守《国际海上避碰规则》以进行稳健的决策支持/决策制定。因此,本次调查特别涵盖了所研究的方法和途径如何处理《国际海上避碰规则》。得出了关于它们在工业实施中的应用的结论。 (注:原文中“manned”一词翻译为“有人操控的”更合适,但按照要求未添加解释)