Wu Yang, Pei Chunlei, Tian Hao, Liu Tao, Zhang Xianhua, Chen Sai, Xiao Quan, Wang Xianhui, Gong Jinlong
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Collaborative Innovation Center for Chemical Science & Engineering, Tianjin University, Tianjin 300072, China.
Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.
JACS Au. 2021 Aug 10;1(9):1459-1470. doi: 10.1021/jacsau.1c00217. eCollection 2021 Sep 27.
The suppression of methane and coke formation over Ni-based catalysts for low temperature ethanol steam reforming remains challenging. This paper describes the structural evolution of Fe-modified Ni/MgAlO catalysts and the influence of iron species on methane and coke suppression for low temperature ethanol steam reforming. Ni-Fe alloy catalysts are gradually oxidized by water to generate Ni-rich alloy and γ-FeO species at steam-to-carbon ratio of 4. The electron transfer from iron to nickel within Ni-Fe alloy weakens the CO adsorption and effectively alleviates the CO/CO methanation. The oxidation capacity of γ-FeO species promotes the transformation of ethoxy to acetate groups to avoid methane formation and the elimination of carbon deposits for anticoking. Ni10Fe10/MgAlO shows a superior performance with a highest H yield of 4.6 mol/mol ethanol at 400 °C for 15 h. This research could potentially provide instructions for the design of Ni-based catalysts for low-temperature ethanol steam reforming.
在低温乙醇蒸汽重整的镍基催化剂上抑制甲烷和焦炭生成仍然具有挑战性。本文描述了铁改性的Ni/MgAlO催化剂的结构演变以及铁物种对低温乙醇蒸汽重整中甲烷和焦炭抑制的影响。在水碳比为4的条件下,Ni-Fe合金催化剂被水逐渐氧化,生成富镍合金和γ-FeO物种。Ni-Fe合金中铁向镍的电子转移减弱了CO的吸附,并有效减轻了CO/CO甲烷化。γ-FeO物种的氧化能力促进了乙氧基向乙酸酯基团的转化,避免了甲烷的生成,并消除了积碳以防止结焦。Ni10Fe10/MgAlO在400℃下15小时表现出优异的性能,乙醇的最高氢气产率为4.6 mol/mol。该研究可能为低温乙醇蒸汽重整镍基催化剂的设计提供指导。