⊥Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States.
#Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
J Am Chem Soc. 2015 Aug 19;137(32):10156-9. doi: 10.1021/jacs.5b07011. Epub 2015 Aug 11.
In this communication, we report a facile approach to constructing catalytic active hierarchical interfaces in one-dimensional (1D) nanostructure, exemplified by the synthesis of TiO2-supported PtFe-FeO(x) nanowires (NWs). The hierarchical interface, constituting atomic level interactions between PtFe and FeO(x) within each NW and the interactions between NWs and support (TiO2), enables CO oxidation with 100% conversion at room temperature. We identify the role of the two interfaces by probing the CO oxidation reaction with isotopic labeling experiments. Both the oxygen atoms (Os) in FeO(x) and TiO2 participate in the initial CO oxidation, facilitating the reaction through a redox pathway. Moreover, the intact 1D structure leads to the high stability of the catalyst. After 30 h in the reaction stream, the PtFe-FeO(x)/TiO2 catalyst exhibits no activity decay. Our results provide a general approach and new insights into the construction of hierarchical interfaces for advanced catalysis.
在本通讯中,我们报告了一种在一维(1D)纳米结构中构建催化活性分级界面的简便方法,以 TiO2 负载的 PtFe-FeOx 纳米线(NWs)的合成为例。分级界面由每个 NW 内 PtFe 和 FeOx 之间以及 NW 和载体(TiO2)之间的原子级相互作用构成,可实现室温下 100%的 CO 转化率。我们通过同位素标记实验探测 CO 氧化反应来确定两个界面的作用。FeOx 和 TiO2 中的氧原子(Os)都参与了初始的 CO 氧化,通过氧化还原途径促进了反应。此外,完整的 1D 结构导致催化剂具有高稳定性。在反应流中 30 小时后,PtFe-FeOx/TiO2 催化剂没有表现出活性衰减。我们的结果为先进催化中构建分级界面提供了一种通用方法和新的见解。