Xie Zuoti, Bâldea Ioan, Nguyen Quyen Van, Frisbie C Daniel
Department of Materials Science and Engineering, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong, 515063, China.
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
Nanoscale. 2021 Oct 14;13(39):16755-16768. doi: 10.1039/d1nr04410a.
Metal-molecule-metal junctions based on alkane thiol (CT) and oligophenylene thiol (OPT) self-assembled monolayers (SAMs) and Au electrodes are expected to exhibit similar electrical asymmetry, as both junctions have one chemisorbed Au-S contact and one physisorbed, van der Waals contact. Asymmetry is quantified by the current rectification ratio RR apparent in the current-voltage (-) characteristics. Here we show that RR 1 for CT and RR 1 for OPT junctions, in contrast to expectation, and further, that RR behaves very differently for CT and OPT junctions under mechanical extension using the conducting probe atomic force microscopy (CP-AFM) testbed. The analysis presented in this paper, which leverages results from the previously validated single level model and quantum chemical calculations, allows us to explain the puzzling experimental findings for CT and OPT in terms of different current rectification mechanisms. Specifically, in CT-based junctions the Stark effect creates the HOMO level shifting necessary for rectification, while for OPT junctions the level shift arises from position-dependent coupling of the HOMO wavefunction with the junction electrostatic potential profile. On the basis of these mechanisms, our quantum chemical calculations allow quantitative description of the impact of mechanical deformation on the measured current rectification. Additionally, our analysis, matched to experiment, facilitates direct estimation of the impact of intramolecular electrostatic screening on the junction potential profile. Overall, our examination of current rectification in benchmark molecular tunnel junctions illuminates key physical mechanisms at play in single step tunneling through molecules, and demonstrates the quantitative agreement that can be obtained between experiment and theory in these systems.
基于烷烃硫醇(CT)和寡聚亚苯基硫醇(OPT)自组装单分子层(SAMs)以及金电极的金属 - 分子 - 金属结预计会表现出相似的电不对称性,因为这两种结都有一个化学吸附的金 - 硫接触和一个物理吸附的范德华接触。不对称性通过电流 - 电压(I - V)特性中明显的电流整流比RR来量化。在此我们表明,与预期相反,CT结的RR>1,而OPT结的RR<1,并且进一步地,在使用导电探针原子力显微镜(CP - AFM)测试平台进行机械拉伸时,CT和OPT结的RR表现差异很大。本文所呈现的分析利用了先前验证的单能级模型和量子化学计算结果,使我们能够根据不同的电流整流机制来解释CT和OPT令人困惑的实验结果。具体而言,在基于CT的结中,斯塔克效应产生了整流所需的最高占据分子轨道(HOMO)能级移动,而对于OPT结,能级移动源于HOMO波函数与结静电势分布的位置相关耦合。基于这些机制,我们的量子化学计算能够定量描述机械变形对测量的电流整流的影响。此外,我们与实验匹配的分析有助于直接估计分子内静电屏蔽对结势分布的影响。总体而言,我们对基准分子隧道结中电流整流的研究阐明了单步隧穿分子过程中起作用的关键物理机制,并证明了在这些系统中实验与理论之间可以达成的定量一致性。