Misra Chandeshwar, Ranganathan Venketesh T, Bandyopadhyay Ranjini
Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India.
Soft Matter. 2021 Oct 27;17(41):9387-9398. doi: 10.1039/d1sm00987g.
Physical aging in colloidal dispersions manifests as a reduction in kinetic freedom of the colloids. In aqueous dispersions of charged clay colloids, the role of interparticle electrostatic interactions in determining the aging dynamics has been evaluated extensively. Despite water being the dispersion medium, the influence of water structure on the physicochemical properties of aging clay dispersions has, however, not been considered before. In this work, we use LAPONITE®, a model hectorite clay mineral that acquires surface charges when dispersed in water, to study the relative contributions of dispersion medium structure and interparticle electrostatic interactions on the physicochemical properties of aging hectorite clay dispersions. The structure of the dispersion medium is modified either by incorporating dissociating/non-dissociating kosmotropic (structure-inducing) or chaotropic (structure-disrupting) molecules or by changing dispersion temperature. Photon correlation spectroscopy, rheological measurements and particle-scale imaging are employed to evaluate the physicochemical properties of the dispersions. Our experiments involving incorporation of external additives demonstrate a strong influence of dispersion medium structure on the dispersion properties when the interparticle electrostatic interactions are weak. We introduce a new temperature dependent measurement protocol, wherein the temperature of the medium is fixed before adding the clay particles, to manipulate the hydrogen bonds in the aqueous medium in the absence of external additives. Accelerated aging, observed upon raising the temperature regardless of the experimental thermal histories, is attributed to increased interparticle electrostatic interactions as in the room temperature experiments with ionic additives. Our study identifies that in the presence of weak interparticle electrostatic interactions, changes in the physicochemical properties of charged clay dispersions can be driven by manipulating hydrogen bond populations in aqueous medium.
胶体分散体系中的物理老化表现为胶体动力学自由度的降低。在带电粘土胶体的水分散体系中,粒子间静电相互作用在决定老化动力学方面的作用已得到广泛评估。然而,尽管水是分散介质,但水结构对老化粘土分散体系物理化学性质的影响此前尚未得到考虑。在这项工作中,我们使用锂皂石(LAPONITE®),一种在水中分散时会获得表面电荷的蒙脱石粘土矿物模型,来研究分散介质结构和粒子间静电相互作用对老化蒙脱石粘土分散体系物理化学性质的相对贡献。通过加入离解/非离解的促晶(结构诱导)或离液(结构破坏)分子,或改变分散温度来改变分散介质的结构。采用光子相关光谱、流变学测量和粒子尺度成像来评估分散体系的物理化学性质。我们涉及加入外部添加剂的实验表明,当粒子间静电相互作用较弱时,分散介质结构对分散性质有很大影响。我们引入了一种新的温度相关测量方案,即在加入粘土颗粒之前固定介质温度,以在无外部添加剂的情况下操控水介质中的氢键。无论实验热历史如何,升高温度时观察到的加速老化归因于粒子间静电相互作用增强,这与在室温下使用离子添加剂的实验情况相同。我们的研究表明,在粒子间静电相互作用较弱的情况下,通过操控水介质中的氢键数量,可以驱动带电粘土分散体系物理化学性质的变化。