Suppr超能文献

西格玛度量在免疫和蛋白质分析物质量控制策略中的应用。

Application of Sigma metrics in the quality control strategies of immunology and protein analytes.

机构信息

Department of Medicine Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.

Department of Medicine Laboratory, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.

出版信息

J Clin Lab Anal. 2021 Nov;35(11):e24041. doi: 10.1002/jcla.24041. Epub 2021 Oct 4.

Abstract

BACKGROUND

Six Sigma (6σ) is an efficient laboratory management method. We aimed to analyze the performance of immunology and protein analytes in terms of Six Sigma.

METHODS

Assays were evaluated for these 10 immunology and protein analytes: Immunoglobulin G (IgG), Immunoglobulin A (IgA), Immunoglobulin M (IgM), Complement 3 (C3), Complement 4 (C4), Prealbumin (PA), Rheumatoid factor (RF), Anti streptolysin O (ASO), C-reactive protein (CRP), and Cystatin C (Cys C). The Sigma values were evaluated based on bias, four different allowable total error (TEa) and coefficient of variation (CV) at QC materials levels 1 and 2 in 2020. Sigma Method Decision Charts were established. Improvement measures of analytes with poor performance were recommended according to the quality goal index (QGI), and appropriate quality control rules were given according to the Sigma values.

RESULTS

While using the TEa , 90% analytes had a world-class performance with σ>6, Cys C showed marginal performance with σ<4. While using minimum, desirable, and optimal biological variation of TEa, only three (IgG, IgM, and CRP), one (CRP), and one (CRP) analytes reached 6σ level, respectively. Based on σ that is calculated from TEa , Sigma Method Decision Charts were constructed. For Cys C, five multi-rules (1 /2 /R /4 /6 , N = 6, R = 1, Batch length: 45) were adopted for QC management. The remaining analytes required only one QC rule (1 , N = 2, R = 1, Batch length: 1000). Cys C need to improve precision (QGI = 0.12).

CONCLUSIONS

The laboratories should choose appropriate TEa goals and make judicious use of Sigma metrics as a quality improvement tool.

摘要

背景

六西格玛(6σ)是一种高效的实验室管理方法。我们旨在分析免疫和蛋白质分析物在六西格玛方面的性能。

方法

评估了以下 10 种免疫和蛋白质分析物的分析:免疫球蛋白 G(IgG)、免疫球蛋白 A(IgA)、免疫球蛋白 M(IgM)、补体 3(C3)、补体 4(C4)、前白蛋白(PA)、类风湿因子(RF)、抗链球菌溶血素 O(ASO)、C 反应蛋白(CRP)和胱抑素 C(Cys C)。根据 2020 年 QC 材料水平 1 和 2 处的偏倚、四个不同的允许总误差(TEa)和变异系数(CV),评估 Sigma 值。建立了 Sigma 方法决策图。根据质量目标指数(QGI),建议对性能不佳的分析物采取改进措施,并根据 Sigma 值给出适当的质量控制规则。

结果

使用 TEa 时,90%的分析物具有 σ>6 的世界级性能,Cys C 的性能为 σ<4。使用 TEa 的最小、理想和最佳生物变异性时,只有三种(IgG、IgM 和 CRP)、一种(CRP)和一种(CRP)分析物分别达到 6σ 水平。根据从 TEa 计算的 σ,构建了 Sigma 方法决策图。对于 Cys C,采用了五种多规则(1/2/R/4/6,N=6,R=1,批长度:45)进行 QC 管理。其余分析物只需一个 QC 规则(1,N=2,R=1,批长度:1000)。Cys C 需要提高精密度(QGI=0.12)。

结论

实验室应选择适当的 TEa 目标,并明智地使用 Sigma 指标作为质量改进工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a243/8605144/8ed564d1739d/JCLA-35-e24041-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验