Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States.
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Langmuir. 2021 Oct 19;37(41):12049-12058. doi: 10.1021/acs.langmuir.1c01825. Epub 2021 Oct 4.
Many common bacteria use amphiphilic -acyl-L-homoserine lactones (AHLs) as signaling molecules to coordinate group behaviors at high cell densities. Past studies demonstrate that AHLs can adsorb to and promote the remodeling of lipid membranes in ways that could underpin cell-cell or host-cell interactions. Here, we report that changes in AHL acyl tail group length and oxidation state (e.g., the presence or absence of a 3-oxo group) can lead to differences in the interactions of eight naturally occurring AHLs in solution and in contact with model lipid membranes. Our results reveal that the presence of a 3-oxo group impacts remodeling when AHLs are placed in contact with supported lipid bilayers (SLBs) of the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Whereas AHLs that have 3-oxo groups generally promote the formation of microtubules, AHLs that lack 3-oxo groups generally form hemispherical caps on the surfaces of SLBs. These results are interpreted in terms of the time scales on which AHLs translocate across bilayers to relieve asymmetrical bilayer stress. Quartz crystal microbalance with dissipation measurements also reveal that 3-oxo AHLs associate with DOPC bilayers to a greater extent than their non-3-oxo analogues. In contrast, we observed no monotonic relationship between AHL tail length and bilayer reformation. Finally, we observed that 3-oxo AHLs facilitate greater transport or leakage of molecular cargo across the membranes of DOPC vesicles relative to AHLs without 3-oxo groups, also suggesting increased bilayer disruption and destabilization. These fundamental studies hint at interactions and associated multiscale phenomena that may inform current interpretations of the behaviors of AHLs in biological contexts. These results could also provide guidance useful for the design of new classes of synthetic materials (e.g., sensor elements or drug delivery vehicles) that interact with or respond selectively to communities of bacteria that use 3-oxo AHLs for cell-cell communication.
许多常见细菌使用两亲性酰基-L-高丝氨酸内酯 (AHL) 作为信号分子,在高细胞密度下协调群体行为。过去的研究表明,AHL 可以吸附并促进脂质膜的重塑,从而支持细胞-细胞或宿主-细胞的相互作用。在这里,我们报告说 AHL 酰基尾基团长度和氧化状态(例如,是否存在 3-氧代基团)的变化会导致八种天然存在的 AHL 在溶液中和与模型脂质膜接触时相互作用的差异。我们的结果表明,当 AHL 与磷脂 1,2-二油酰基-sn-甘油-3-磷酸胆碱 (DOPC) 的支撑脂质双层 (SLB) 接触时,存在 3-氧代基团会影响重塑。具有 3-氧代基团的 AHL 通常会促进微管的形成,而缺乏 3-氧代基团的 AHL 通常会在 SLB 表面形成半球形帽。这些结果可以根据 AHL 穿过双层以缓解不对称双层压力的时间尺度来解释。石英晶体微天平耗散测量也表明,3-氧代 AHL 与 DOPC 双层的结合程度大于其非 3-氧代类似物。相比之下,我们没有观察到 AHL 尾部长度与双层重建之间存在单调关系。最后,我们观察到 3-氧代 AHL 相对于没有 3-氧代基团的 AHL 更有利于分子货物通过 DOPC 囊泡的膜的运输或泄漏,这也表明双层破坏和失稳增加。这些基础研究暗示了相互作用和相关的多尺度现象,这些现象可能为目前对 AHL 在生物环境中的行为的解释提供信息。这些结果还可以为设计与使用 3-氧代 AHL 进行细胞间通讯的细菌群落相互作用或选择性响应的新型合成材料(例如传感器元件或药物输送载体)提供有用的指导。