Suppr超能文献

肿瘤突变负荷(TMB)定量检测在诊断平台上的一致性:癌症研究之友 TMB 标准化项目第二阶段。

Aligning tumor mutational burden (TMB) quantification across diagnostic platforms: phase II of the Friends of Cancer Research TMB Harmonization Project.

机构信息

Friends of Cancer Research, Washington, USA.

National Cancer Institute, Bethesda, USA.

出版信息

Ann Oncol. 2021 Dec;32(12):1626-1636. doi: 10.1016/j.annonc.2021.09.016. Epub 2021 Oct 1.

Abstract

BACKGROUND

Tumor mutational burden (TMB) measurements aid in identifying patients who are likely to benefit from immunotherapy; however, there is empirical variability across panel assays and factors contributing to this variability have not been comprehensively investigated. Identifying sources of variability can help facilitate comparability across different panel assays, which may aid in broader adoption of panel assays and development of clinical applications.

MATERIALS AND METHODS

Twenty-nine tumor samples and 10 human-derived cell lines were processed and distributed to 16 laboratories; each used their own bioinformatics pipelines to calculate TMB and compare to whole exome results. Additionally, theoretical positive percent agreement (PPA) and negative percent agreement (NPA) of TMB were estimated. The impact of filtering pathogenic and germline variants on TMB estimates was assessed. Calibration curves specific to each panel assay were developed to facilitate translation of panel TMB values to whole exome sequencing (WES) TMB values.

RESULTS

Panel sizes >667 Kb are necessary to maintain adequate PPA and NPA for calling TMB high versus TMB low across the range of cut-offs used in practice. Failure to filter out pathogenic variants when estimating panel TMB resulted in overestimating TMB relative to WES for all assays. Filtering out potential germline variants at >0% population minor allele frequency resulted in the strongest correlation to WES TMB. Application of a calibration approach derived from The Cancer Genome Atlas data, tailored to each panel assay, reduced the spread of panel TMB values around the WES TMB as reflected in lower root mean squared error (RMSE) for 26/29 (90%) of the clinical samples.

CONCLUSIONS

Estimation of TMB varies across different panels, with panel size, gene content, and bioinformatics pipelines contributing to empirical variability. Statistical calibration can achieve more consistent results across panels and allows for comparison of TMB values across various panel assays. To promote reproducibility and comparability across assays, a software tool was developed and made publicly available.

摘要

背景

肿瘤突变负担 (TMB) 的测量有助于确定可能从免疫治疗中获益的患者;然而,面板检测存在经验性变异性,导致这种变异性的因素尚未得到全面研究。确定变异性的来源可以帮助促进不同面板检测之间的可比性,这可能有助于更广泛地采用面板检测和开发临床应用。

材料和方法

对 29 个肿瘤样本和 10 个人源细胞系进行处理并分发给 16 个实验室;每个实验室都使用自己的生物信息学管道来计算 TMB 并与全外显子结果进行比较。此外,还估计了 TMB 的理论阳性百分比一致率 (PPA) 和阴性百分比一致率 (NPA)。评估了过滤致病性和种系变异对 TMB 估计的影响。为了促进将面板 TMB 值转换为全外显子测序 (WES) TMB 值,开发了特定于每个面板检测的校准曲线。

结果

当用于实践中的各种截止值时, >667 Kb 的面板大小对于维持 TMB 高与 TMB 低之间的足够 PPA 和 NPA 是必要的。在估计面板 TMB 时未能过滤掉致病性变异会导致所有检测的 TMB 相对于 WES 高估。过滤掉 >0%人群次要等位基因频率的潜在种系变异会与 WES TMB 最强相关。应用源自癌症基因组图谱数据的校准方法,针对每个面板检测进行定制,可以降低 WES TMB 周围面板 TMB 值的分布范围,反映在 26/29 (90%)的临床样本中均方根误差 (RMSE) 降低。

结论

不同的面板之间 TMB 的估计存在差异,面板大小、基因含量和生物信息学管道都会导致经验性变异性。统计校准可以在面板之间实现更一致的结果,并允许比较各种面板检测的 TMB 值。为了促进检测之间的可重复性和可比性,开发了一个软件工具并公开发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验