Suppr超能文献

迈向可持续林业:利用空间贝叶斯信念网络量化森林相关生态系统服务之间的权衡。

Towards sustainable forestry: Using a spatial Bayesian belief network to quantify trade-offs among forest-related ecosystem services.

机构信息

Department of Applied Geomatics, Centre d'Applications et de Recherche en Télédétection (CARTEL), Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.

Department of Applied Geomatics, Centre d'Applications et de Recherche en Télédétection (CARTEL), Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.

出版信息

J Environ Manage. 2022 Jan 1;301:113817. doi: 10.1016/j.jenvman.2021.113817. Epub 2021 Oct 1.

Abstract

Assessing trade-offs among ecosystem services (ESs) that are provided by forests is necessary to support decision-making and to minimize negative effects of timber harvesting. In this study, we examined how spatial data, forest operational rules, ESs, and probabilistic statistics can be combined into a practical tool for trade-off analysis that could guide decision-making towards sustainable forestry. Our main goal was to analyze trade-offs among the wood provisioning ES and other forest ESs at the landscape level using a Bayesian belief network (BBN). We used LiDAR data to derive four ES layers as inputs to a spatial BBN: (i) wood provisioning; (ii) erosion regulating; (iii) climate regulating; and (iv) habitat supporting. We quantified operational constraints with four forest operational rules (FOR) that were defined in terms of: (i) potential harvest block size; (ii) distance between a small potential harvest block and a larger harvest block; (iii) gross merchantable volume (GMV); and (iv) distance to an existing resource road. Maps of the most probable trade-off classes between the wood provisioning ES and other ESs enabled us to identify areas where timber harvesting should be avoided or where timber harvesting should have a very low negative effect on other ESs. Even with our most restrictive management scenario, the total GMV that could be harvested met the annual allowable cut (AAC) volume required to meet sustainable forestry objectives. Through our study, we demonstrated that high-resolution spatial data could be used to quantify trade-offs among wood provisioning ES and other forest-related ESs and to simulate small changes in ES indicators within the BBN. We also demonstrated the potential to evaluate management scenarios to reduce trade-offs by considering FOR as inputs to the BBN. Maps of the most probable trade-off classes among two or three ESs under operational constraints provide key information to guide forest management decision-making towards sustainable forestry.

摘要

评估森林提供的生态系统服务(ES)之间的权衡是支持决策和最小化木材采伐负面影响的必要条件。在本研究中,我们研究了如何将空间数据、森林作业规则、ES 和概率统计数据结合到一个实用的权衡分析工具中,以指导可持续林业的决策。我们的主要目标是使用贝叶斯信念网络(BBN)分析景观水平上木材供应 ES 与其他森林 ES 之间的权衡。我们使用 LiDAR 数据得出四个 ES 层作为空间 BBN 的输入:(i)木材供应;(ii)侵蚀调节;(iii)气候调节;和(iv)栖息地支持。我们用四个森林作业规则(FOR)量化了作业限制,这些规则是根据:(i)潜在采伐块大小;(ii)小潜在采伐块与大采伐块之间的距离;(iii)总出材量(GMV);和(iv)到现有资源道路的距离来定义的。木材供应 ES 与其他 ES 之间最可能的权衡类别的地图使我们能够确定应避免木材采伐的区域,或者应避免木材采伐对其他 ES 产生非常低的负面影响的区域。即使在我们最严格的管理情景下,可收获的总 GMV 也满足了可持续林业目标所需的年度允许采伐量(AAC)。通过我们的研究,我们证明了高分辨率空间数据可用于量化木材供应 ES 与其他与森林相关的 ES 之间的权衡,并在 BBN 中模拟 ES 指标的微小变化。我们还证明了通过将 FOR 作为 BBN 的输入来评估管理情景以减少权衡的潜力。在作业限制下,两个或三个 ES 之间最可能的权衡类别的地图提供了关键信息,以指导可持续林业的森林管理决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验