Unité de Microbiologie Structurale, Institut Pasteurgrid.428999.7grid.418532.9grid.428999.7, CNRS UMR 3528, Université de Paris, Paris, France.
Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo y Esmeralda, Rosario, Argentina.
mBio. 2021 Oct 26;12(5):e0171721. doi: 10.1128/mBio.01717-21. Epub 2021 Oct 5.
Signal transduction is essential for bacteria to adapt to changing environmental conditions. Among many forms of posttranslational modifications, reversible protein phosphorylation has evolved as a ubiquitous molecular mechanism of protein regulation in response to specific stimuli. The Ser/Thr protein kinase PknG modulates the fate of intracellular glutamate by controlling the phosphorylation status of the 2-oxoglutarate dehydrogenase regulator OdhI, a function that is conserved among diverse actinobacteria. PknG has a modular organization characterized by the presence of regulatory domains surrounding the catalytic domain. Here, we present an investigation using experiments, as well as biochemical and structural methods, of the molecular basis of the regulation of PknG from Corynebacterium glutamicum (PknG), in the light of previous knowledge available for the kinase from Mycobacterium tuberculosis (PknG). We found that OdhI phosphorylation by PknG is regulated by a conserved mechanism that depends on a C-terminal domain composed of tetratricopeptide repeats (TPRs) essential for metabolic homeostasis. Furthermore, we identified a conserved structural motif that physically connects the TPR domain to a β-hairpin within the flexible N-terminal region that is involved in docking interactions with OdhI. Based on our results and previous reports, we propose a model in which the TPR domain of PknG couples signal detection to the specific phosphorylation of OdhI. Overall, the available data indicate that conserved PknG domains in distant actinobacteria retain their roles in kinase regulation in response to nutrient availability. Bacteria control the metabolic processes by which they obtain nutrients and energy in order to adapt to the environment. , one of the largest bacterial phyla of major importance for biotechnology, medicine, and agriculture, developed a unique control process that revolves around a key protein, the protein kinase PknG. Here, we use genetic, biochemical, and structural approaches to study PknG in a system that regulates glutamate production in Corynebacterium glutamicum, a species used for the industrial production of amino acids. The reported findings are conserved in related , with broader significance for microorganisms that cause disease, as well as environmental species used industrially to produce amino acids and antibiotics every year.
信号转导对于细菌适应不断变化的环境条件至关重要。在许多翻译后修饰形式中,可逆蛋白磷酸化已演变为一种普遍的分子机制,可响应特定刺激调节蛋白质。Ser/Thr 蛋白激酶 PknG 通过控制 2-氧戊二酸脱氢酶调节剂 OdhI 的磷酸化状态来调节细胞内谷氨酸的命运,这种功能在多种放线菌中都保守。PknG 具有模块化组织,其特征是在催化结构域周围存在调节结构域。在这里,我们使用实验、生化和结构方法,根据先前从结核分枝杆菌(PknG)获得的激酶知识,研究了来自谷氨酸棒状杆菌(PknG)的 PknG 调控的分子基础。我们发现,PknG 对 OdhI 的磷酸化受一种保守机制的调控,该机制依赖于一个由四肽重复基序(TPR)组成的 C 端结构域,该结构域对于代谢稳态至关重要。此外,我们鉴定了一个保守的结构基序,该基序将 TPR 结构域与柔性 N 端区域内的 β-发夹物理连接,该区域参与与 OdhI 的对接相互作用。基于我们的结果和先前的报道,我们提出了一个模型,其中 PknG 的 TPR 结构域将信号检测与 OdhI 的特异性磷酸化联系起来。总的来说,可用的数据表明,在距离较远的放线菌中保守的 PknG 结构域在响应营养物质可用性时保留了它们在激酶调控中的作用。细菌通过控制其获取营养物质和能量的代谢过程来适应环境。作为生物技术、医学和农业领域最重要的细菌门之一,放线菌开发了一种独特的控制过程,该过程围绕着一种关键蛋白,即蛋白激酶 PknG。在这里,我们使用遗传、生化和结构方法来研究谷氨酸棒状杆菌中 PknG 的调控,谷氨酸棒状杆菌是一种用于工业生产氨基酸的物种。在引起疾病的相关微生物以及每年用于工业生产氨基酸和抗生素的环境物种中,报告的发现是保守的。