Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
J Phys Chem A. 2021 Oct 14;125(40):8912-8924. doi: 10.1021/acs.jpca.1c08132. Epub 2021 Oct 5.
In this contribution we present a quantum dynamical study of the photoexcited hydrogen bonded base pair adenine-thymine (AT) in a Watson-Crick arrangement. To that end, we parametrize Linear Vibronic Coupling (LVC) models with Time-Dependent Density Functional Theory (TD-DFT) calculations, exploiting a fragment diabatization scheme (FrD) we have developed to define diabatic states on the basis of individual chromophores in a multichromophoric system. Wavepacket propagations were run with the multilayer extension of the Multiconfiguration Time-Dependent Hartree method. We considered excitations to the three lowest bright states, a * state of thymine and two * states (L and L) of adenine, and we found that on the 100 fs time scale the main decay pathways involve intramonomer population transfers toward nπ* states of the same nucleobase. In AT this transfer is less effective than in the isolated nucleobases, because hydrogen bonding destabilizes the nπ* states. The population transfer to the A → T charge transfer state is negligible, making the ultrafast (femtosecond) decay through the proton coupled electron transfer mechanism unlikely, in line with experimental results in apolar solvents. The excitation energy transfer is also very small. We carefully compare the predictions of LVC Hamiltonians obtained with different sets of diabatic states, defined so to match either local states of the two separated monomers or the base pair adiabatic states in the Franck-Condon region. To that end we also extend the flexibility of the FrD-LVC approach, introducing a new strategy to define fragments diabatic states that account for the effect of the rest of the multichromohoric system through a Molecular Mechanics potential.
在本贡献中,我们对 Watson-Crick 排列的氢键碱基对腺嘌呤-胸腺嘧啶(AT)进行了量子动力学研究。为此,我们使用基于个体发色团的片段离解方案(FrD)来参数化线性振子耦合(LVC)模型与时间相关密度泛函理论(TD-DFT)计算,定义了离解态。在多色系统中。波包传播是使用多层扩展的多组态含时哈特ree 方法进行的。我们考虑了三个最低亮态的激发,胸腺嘧啶的 a态和腺嘌呤的两个态(L 和 L),我们发现,在 100 fs 的时间尺度上,主要的衰减途径涉及到向同一核碱基的 nπ态的单体内种群转移。在 AT 中,这种转移不如在孤立的核碱基中有效,因为氢键会使 nπ态不稳定。向 A→T 电荷转移态的种群转移可以忽略不计,这使得超快(飞秒)通过质子偶联电子转移机制的衰减不太可能,这与非极性溶剂中的实验结果一致。能量转移也非常小。我们仔细比较了使用不同离解态集获得的 LVC 哈密顿量的预测,这些离解态集定义为匹配两个分离单体的局部态或 Franck-Condon 区域中的碱基对绝热态。为此,我们还扩展了 FrD-LVC 方法的灵活性,引入了一种新策略来定义片段离解态,通过分子力学势来考虑多色系统其余部分的影响。