School of Physics and Optoelectronics Engineering, Ludong University, 264025 Yantai, Shandong, PR China.
School of Physics Engineering, Qufu Normal University, 2673100 Qufu, Shandong, PR China.
J Phys Chem A. 2022 Oct 20;126(41):7468-7479. doi: 10.1021/acs.jpca.2c05271. Epub 2022 Sep 13.
We present a viable protocol to compute vibrational resonance Raman (vRR) spectra for systems with several close-lying and potentially coupled electronic states. It is based on the parametrization of linear vibronic coupling (LVC) models from time-dependent density functional theory (TD-DFT) calculations and quantum dynamics propagations of vibronic wavepackets with the multilayer version of the multiconfiguration time-dependent Hartree (ML-MCTDH) method. Our approach is applied to thymine considering seven coupled electronic states, comprising the three lowest bright states, and all vibrational coordinates. Computed vRR at different excitation wavelengths are in good agreement with the available experimental data. Up to 250 nm the signal is dominated by the lowest HOMO → LUMO transition, whereas at 233 nm, in the valley between the two lowest energy absorption bands, the contributions of all the three bright states, and their interferences and couplings, are important. Inclusion of solvent (water) effects improves the agreement with experiment, reproducing the coalescence of vibrational bands due to CC and C═O stretchings. With our approach we disentangle and assess the effect of interferences between the contribution of different quasi-resonant states to the transition polarizability and the effect of interstate couplings. Our findings strongly suggest that in cases of close-lying and potentially coupled states a simple inclusion of interference effects is not sufficient, and a fully nonadiabatic computation should instead be performed. We also document that for systems with strong couplings and quasi-degenerate states, the use of HT perturbative approach, not designed for these cases, may lead to large artifacts.
我们提出了一种可行的方案,用于计算具有多个近邻且潜在耦合电子态的系统的振动共振拉曼(vRR)光谱。它基于从含时密度泛函理论(TD-DFT)计算得出的线性振子耦合(LVC)模型的参数化,以及通过多层多组态含时哈特里(ML-MCTDH)方法对振子波包的量子动力学传播。我们的方法应用于胸腺嘧啶,考虑了七个耦合电子态,包括三个最低亮态和所有的振动坐标。在不同激发波长下计算出的 vRR 与可用的实验数据吻合良好。在 250nm 以下,信号主要由最低的 HOMO→LUMO 跃迁决定,而在 233nm 处,在两个最低能量吸收带之间的谷中,所有三个亮态及其干涉和耦合的贡献都很重要。包括溶剂(水)效应可以提高与实验的一致性,再现由于 CC 和 C=O 伸缩引起的振动带的合并。通过我们的方法,我们可以分解并评估不同准共振态对跃迁极化率的贡献之间的干涉效应和态间耦合的影响。我们的发现强烈表明,在近邻且潜在耦合态的情况下,简单地包括干涉效应是不够的,而应该进行完全非绝热计算。我们还证明,对于具有强耦合和准简并态的系统,使用不是为这些情况设计的 HT 微扰方法可能会导致较大的伪像。