Li Pengsong, Duan Xinxuan, Kuang Yun, Sun Xiaoming
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Small. 2021 Nov;17(45):e2102078. doi: 10.1002/smll.202102078. Epub 2021 Oct 5.
Electrocatalytic water splitting in acidic media is a promising strategy for grid scale production of hydrogen using renewable energy, but challenges still exist in the development of advanced catalysts with both high activity and stability. Herein, it is reported that iridium doped tungsten trioxide (Ir-doped WO ) with arrayed structure and confined Ir sites is an efficient and durable bi-functional catalyst for overall acidic water splitting. A low overpotential (258 mV) is required to achieve an oxygen evolution reaction current density of 10 mA cm in 0.5 m H SO solution. Meanwhile, Ir-doped WO processes a similar intrinsic activity to Pt/C toward hydrogen evolution reaction. Overall water splitting using the bi-functional Ir-doped WO catalyst shows low cell voltages of 1.56 and 1.68 V to drive the current densities of 10 and 100 mA cm , respectively, with only 16 mV decay observed after 60 h continuous electrolysis under the current density of 100 mA cm . Structural analysis and density functional theory calculation indicate that the adjusted coordination environment of Ir within the crystalline matrix of WO contributes to the high activity and durability.
在酸性介质中进行电催化水分解是利用可再生能源进行大规模制氢的一种有前景的策略,但在开发兼具高活性和稳定性的先进催化剂方面仍存在挑战。在此,据报道,具有阵列结构和受限铱位点的铱掺杂三氧化钨(Ir掺杂的WO₃)是一种用于整体酸性水分解的高效且耐用的双功能催化剂。在0.5 M H₂SO₄溶液中,要实现10 mA cm⁻²的析氧反应电流密度需要258 mV的低过电位。同时,Ir掺杂的WO₃对析氢反应具有与Pt/C相似的本征活性。使用双功能Ir掺杂的WO₃催化剂进行整体水分解时,分别驱动10和100 mA cm⁻²的电流密度所需的电池电压低至1.56和1.68 V,在100 mA cm⁻²的电流密度下连续电解60小时后,仅观察到16 mV的衰减。结构分析和密度泛函理论计算表明,WO₃晶体基质中Ir配位环境的调整有助于提高活性和耐久性。