Suppr超能文献

近场构建铜@聚吡咯纳米线网络用于等离子体增强太阳能蒸发

Engineering a Copper@Polypyrrole Nanowire Network in the Near Field for Plasmon-Enhanced Solar Evaporation.

作者信息

Wang Wei, Yan Xiaoqing, Geng Jiafeng, Zhao Ning, Liu Liqun, Vogel Tim, Guo Qiang, Ge Lin, Luo Bing, Zhao Yuxin

机构信息

School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.

出版信息

ACS Nano. 2021 Oct 26;15(10):16376-16394. doi: 10.1021/acsnano.1c05789. Epub 2021 Oct 6.

Abstract

Harvesting solar energy for vapor generation is an appealing technology that enables substantial eco-friendly applications to overcome the long-standing global challenge of water and energy crisis. Nonetheless, an undesirable low light utilization efficiency and large heat losses impede their practical use. Here, we demonstrate a typical design paradigm capable of achieving superb nonconvective flow assisted water collecting rates of 2.09 kg/mh under 1 sun irradiation with a high photothermal conversion efficiency of up to 97.6%. The high performance is ensured by an elaborately constructed coaxial copper@polypyrrole nanowire aerogel with surpassing photons acquisition and thermal localization capabilities. Using state-of-the-art micro-/nanoscale measurements and multiphysics calculations, we show that the metallic copper nanowire core can effectively excite surface plasmon resonance, which induces swift relaxation dynamics to achieve a highly efficient light-to-heat conversion process. A thin polypyrrole layer dramatically enhances broadband light absorption with minimized infrared radiation and low thermal conduction, leading to an impressive local heat concentration as high as 220 °C under 4 sun irradiation. Engineered empty space inside aerogel assembly of building blocks further facilitates large light penetration depth, smooth mass transfer, and robust mechanical capacity for synergistically boosting actual presentation. This work provides not only a rational design principle to create sophisticated solar-thermal materials but also critical information that complements insights about heat generation and temperature confinement in a scale-span system during strong light-matter interaction processes.

摘要

收集太阳能用于蒸汽产生是一项颇具吸引力的技术,它能实现大量环保应用,以应对长期存在的全球水和能源危机挑战。然而,不理想的低光利用效率和大量热损失阻碍了它们的实际应用。在此,我们展示了一种典型的设计范例,在1个太阳辐射下,该范例能够实现高达2.09 kg/mh的出色非对流流动辅助集水速率,光热转换效率高达97.6%。这种高性能由精心构建的同轴铜@聚吡咯纳米线气凝胶确保,该气凝胶具有卓越的光子捕获和热局域化能力。通过使用最先进的微/纳米尺度测量和多物理场计算,我们表明金属铜纳米线芯可以有效地激发表面等离子体共振,从而引发快速的弛豫动力学,实现高效的光热转换过程。一层薄薄的聚吡咯层极大地增强了宽带光吸收,同时将红外辐射和热传导降至最低,在4个太阳辐射下导致高达220°C的令人印象深刻的局部热集中。在气凝胶组件的积木结构内部设计的空隙进一步促进了大的光穿透深度、顺畅的传质以及强大的机械能力,从而协同提高实际表现。这项工作不仅提供了一种合理的设计原则来制造复杂的太阳能热材料,还提供了关键信息,补充了在强光-物质相互作用过程中对尺度跨度系统中热产生和温度限制的认识。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验