Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
Dev Med Child Neurol. 2022 Apr;64(4):462-468. doi: 10.1111/dmcn.15068. Epub 2021 Oct 6.
To determine if muscle synergy structure (activations and weights) differs between gait patterns in children with spastic cerebral palsy (CP).
In this cross-sectional study, we classified 188 children with unilateral (n=82) or bilateral (n=106) spastic CP (mean age: 9y 5mo, SD: 4y 3mo, range: 3y 9mo-17y 7mo; 75 females; Gross Motor Function Classification System [GMFCS] level I: 106, GMFCS level II: 55, GMFCS level III: 27) into a minor deviations (n=34), drop foot (n=16), genu recurvatum (n=26), apparent equinus (n=53), crouch (n=39), and jump gait pattern (n=20). Surface electromyography recordings from eight lower limb muscles of the most affected side were used to calculate synergies with weighted non-negative matrix factorization. We compared synergy activations and weights between the patterns.
Synergy structure was similar between gait patterns, although weights differed in the more impaired children (crouch and jump gait) when compared to the other patterns. Variability in synergy structure between participants was high.
The similarity in synergy structure between gait patterns suggests a generic motor control strategy to compensate for the brain lesion. However, the differences in weights and high variability between participants indicate that this generic motor control strategy might be individualized and dependent on impairment level.
确定痉挛型脑瘫儿童不同步态模式的肌肉协同结构(激活和权重)是否存在差异。
在这项横断面研究中,我们将 188 名单侧(n=82)或双侧(n=106)痉挛型脑瘫儿童(平均年龄:9 岁 5 个月,标准差:4 岁 3 个月,范围:3 岁 9 个月-17 岁 7 个月;女性 75 名;粗大运动功能分类系统[GMFCS]水平 I:106 名,GMFCS 水平 II:55 名,GMFCS 水平 III:27 名)分为小偏差(n=34)、马蹄内翻(n=16)、膝反张(n=26)、明显马蹄足(n=53)、蹲伏步态(n=39)和跳跃步态(n=20)。最受影响侧的 8 块下肢肌肉的表面肌电图记录用于通过加权非负矩阵分解计算协同作用。我们比较了不同模式之间协同作用的激活和权重。
尽管在与其他模式相比,更严重受损的儿童(蹲伏和跳跃步态)的权重不同,但协同作用结构在步态模式之间相似。参与者之间协同作用结构的可变性很高。
步态模式之间协同作用结构的相似性表明存在一种通用的运动控制策略来补偿脑损伤。然而,权重的差异和参与者之间的高可变性表明,这种通用的运动控制策略可能是个体化的,并且依赖于损伤水平。