Suppr超能文献

神经网络可实现可重构超表面的正向和逆向设计。

Neural networks enabled forward and inverse design of reconfigurable metasurfaces.

出版信息

Opt Express. 2021 Aug 16;29(17):27219-27227. doi: 10.1364/OE.430704.

Abstract

Nanophotonics has joined the application areas of deep neural networks (DNNs) in recent years. Various network architectures and learning approaches have been employed to design and simulate nanophotonic structures and devices. Design and simulation of reconfigurable metasurfaces is another promising application area for neural network enabled nanophotonic design. The tunable optical response of these metasurfaces rely on the phase transitions of phase-change materials, which correspond to significant changes in their dielectric permittivity. Consequently, simulation and design of these metasurfaces requires the ability to model a diverse span of optical properties. In this work, to realize forward and inverse design of reconfigurable metasurfaces, we construct forward and inverse networks to model a wide range of optical characteristics covering from lossless dielectric to lossy plasmonic materials. As proof-of-concept demonstrations, we design a GeSbTe (GST) tunable resonator and a VO tunable absorber using our forward and inverse networks, respectively.

摘要

近年来,纳米光子学已经加入了深度神经网络(DNNs)的应用领域。各种网络架构和学习方法已被用于设计和模拟纳米光子学结构和器件。可重构超表面的设计和模拟是神经网络辅助纳米光子学设计的另一个有前途的应用领域。这些超表面的可调谐光学响应依赖于相变材料的相变,这对应于其介电常数的显著变化。因此,这些超表面的模拟和设计需要能够建模广泛的光学性质。在这项工作中,为了实现可重构超表面的正向和逆向设计,我们构建了正向和逆向网络,以模拟从无损耗介电材料到有损耗等离子体材料的广泛光学特性。作为概念验证演示,我们分别使用正向和逆向网络设计了 GST 可调谐谐振器和 VO 可调谐吸收器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验