Suppr超能文献

通过地面到水面跨域深度强化学习实现稳健的自主水面航行器导航

Robust ASV Navigation Through Ground to Water Cross-Domain Deep Reinforcement Learning.

作者信息

Lambert Reeve, Li Jianwen, Wu Li-Fan, Mahmoudian Nina

机构信息

MS Student, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States.

PhD Student, School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States.

出版信息

Front Robot AI. 2021 Sep 20;8:739023. doi: 10.3389/frobt.2021.739023. eCollection 2021.

Abstract

This paper presents a framework to alleviate the Deep Reinforcement Learning (DRL) training data sparsity problem that is present in challenging domains by creating a DRL agent training and vehicle integration methodology. The methodology leverages accessible domains to train an agent to solve navigational problems such as obstacle avoidance and allows the agent to generalize to challenging and inaccessible domains such as those present in marine environments with minimal further training. This is done by integrating a DRL agent at a high level of vehicle control and leveraging existing path planning and proven low-level control methodologies that are utilized in multiple domains. An autonomy package with a tertiary multilevel controller is developed to enable the DRL agent to interface at the prescribed high control level and thus be separated from vehicle dynamics and environmental constraints. An example Deep Q Network (DQN) employing this methodology for obstacle avoidance is trained in a simulated ground environment, and then its ability to generalize across domains is experimentally validated. Experimental validation utilized a simulated water surface environment and real-world deployment of ground and water robotic platforms. This methodology, when used, shows that it is possible to leverage accessible and data rich domains, such as ground, to effectively develop marine DRL agents for use on Autonomous Surface Vehicle (ASV) navigation. This will allow rapid and iterative agent development without the risk of ASV loss, the cost and logistic overhead of marine deployment, and allow landlocked institutions to develop agents for marine applications.

摘要

本文提出了一个框架,通过创建一种深度强化学习(DRL)智能体训练与车辆集成方法,来缓解在具有挑战性的领域中存在的DRL训练数据稀疏问题。该方法利用可访问的领域来训练智能体解决诸如避障等导航问题,并使智能体在经过最少的进一步训练后,能够推广到具有挑战性和不可访问的领域,如海洋环境中存在的领域。这是通过在车辆控制的高级层面集成DRL智能体,并利用现有的路径规划和经过验证的低级控制方法来实现的,这些方法在多个领域中都有应用。开发了一个带有三级多级控制器的自主软件包,以使DRL智能体能够在规定的高控制级别进行交互,从而与车辆动力学和环境约束分离。一个采用这种避障方法的深度Q网络(DQN)示例在模拟地面环境中进行了训练,然后通过实验验证了其跨领域推广的能力。实验验证利用了模拟水面环境以及地面和水上机器人平台的实际部署。这种方法在使用时表明,利用诸如地面等可访问且数据丰富的领域,有效地开发用于自主水面舰艇(ASV)导航的海洋DRL智能体是可能的。这将允许快速且迭代地开发智能体,而不会有ASV损失的风险、海洋部署的成本和后勤开销,并且允许内陆机构开发用于海洋应用的智能体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7622/8488128/7109ff7812f1/frobt-08-739023-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验