Suppr超能文献

量化微宇宙质量损失对动力学常数估计的影响。

Quantifying Impacts of Microcosm Mass Loss on Kinetic Constant Estimation.

机构信息

Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States.

S&B Christ Consulting, Las Vegas, Nevada 89134, United States.

出版信息

Environ Sci Technol. 2021 Oct 19;55(20):13822-13833. doi: 10.1021/acs.est.1c03452. Epub 2021 Oct 7.

Abstract

Microcosm experiments to assess microbial reductive dechlorination of chlorinated aliphatic hydrocarbons typically experience 5-50% mass loss due to frequent sampling events and diffusion through septa. A literature review, however, reveals that models fit to such experiments for kinetic constant estimation have generally failed to account for experimental mass loss. To investigate possible resultant bias in best-fit parameters, a series of numerical experiments was conducted in which Monod kinetic models with and without mass loss were fit to more than 1300 synthetic data sets, generated using published microcosm data. Models that failed to account for mass loss resulted in significant fitted parameter bias. Bias ranged from 5 to 45% of the parameter magnitude for Monte Carlo simulations with low (approximately 10%) mass loss to 20-120% for simulations with high (approximately 40%) mass loss. In addition, for high mass loss simulations, best-fit values consistently fell along the bounds of the optimization range. These results suggest that failure to properly account for mass loss in microcosms may lead to inaccurate estimation of kinetic constants and may explain some of the literature-reported variability in these parameters. A model is presented that provides a method for including sampling and diffusional mass losses to improve kinetic constant estimation accuracy.

摘要

由于频繁的采样事件和通过隔片的扩散,评估氯化脂肪烃微生物还原脱氯的微观实验通常会经历 5-50%的质量损失。然而,文献综述表明,为了估计动力学常数而拟合此类实验的模型通常未能考虑到实验中的质量损失。为了研究最佳拟合参数中可能存在的偏差,进行了一系列数值实验,其中使用发表的微观实验数据生成了超过 1300 个合成数据集,并用带有和不带有质量损失的 Monod 动力学模型对其进行了拟合。未考虑质量损失的模型导致拟合参数出现显著偏差。对于具有低(约 10%)质量损失的蒙特卡罗模拟,偏差范围为参数幅度的 5-45%,对于具有高(约 40%)质量损失的模拟,偏差范围为 20-120%。此外,对于高质量损失模拟,最佳拟合值始终沿着优化范围的边界。这些结果表明,在微观实验中未能正确考虑质量损失可能导致动力学常数的估计不准确,并可能解释了文献中这些参数的一些可变性。提出了一个模型,该模型提供了一种包含采样和扩散质量损失的方法,以提高动力学常数估计的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验