School of Computing Sciences, University of East Anglia, Norwich, UK.
Br J Math Stat Psychol. 2021 Nov;74(3):365-403. doi: 10.1111/bmsp.12231. Epub 2021 Mar 16.
We develop factor copula models to analyse the dependence among mixed continuous and discrete responses. Factor copula models are canonical vine copulas that involve both observed and latent variables, hence they allow tail, asymmetric and nonlinear dependence. They can be explained as conditional independence models with latent variables that do not necessarily have an additive latent structure. We focus on important issues of interest to the social data analyst, such as model selection and goodness of fit. Our general methodology is demonstrated with an extensive simulation study and illustrated by reanalysing three mixed response data sets. Our studies suggest that there can be a substantial improvement over the standard factor model for mixed data and make the argument for moving to factor copula models.
我们开发因子 Copula 模型来分析混合连续和离散响应之间的相关性。因子 Copula 模型是典型的 Vine Copula,它同时涉及观测变量和潜在变量,因此可以描述尾部、非对称和非线性相关性。因子 Copula 模型可以解释为具有潜在变量的条件独立性模型,而潜在变量不一定具有加性结构。我们重点研究了对社会数据分析人员有重要意义的问题,例如模型选择和拟合优度。我们的一般方法是通过广泛的模拟研究来展示,并通过重新分析三个混合响应数据集来举例说明。我们的研究表明,对于混合数据,标准因子模型可以得到显著改进,并主张转向因子 Copula 模型。