Suppr超能文献

混合数据的因子 Copula 模型。

Factor copula models for mixed data.

机构信息

School of Computing Sciences, University of East Anglia, Norwich, UK.

出版信息

Br J Math Stat Psychol. 2021 Nov;74(3):365-403. doi: 10.1111/bmsp.12231. Epub 2021 Mar 16.

Abstract

We develop factor copula models to analyse the dependence among mixed continuous and discrete responses. Factor copula models are canonical vine copulas that involve both observed and latent variables, hence they allow tail, asymmetric and nonlinear dependence. They can be explained as conditional independence models with latent variables that do not necessarily have an additive latent structure. We focus on important issues of interest to the social data analyst, such as model selection and goodness of fit. Our general methodology is demonstrated with an extensive simulation study and illustrated by reanalysing three mixed response data sets. Our studies suggest that there can be a substantial improvement over the standard factor model for mixed data and make the argument for moving to factor copula models.

摘要

我们开发因子 Copula 模型来分析混合连续和离散响应之间的相关性。因子 Copula 模型是典型的 Vine Copula,它同时涉及观测变量和潜在变量,因此可以描述尾部、非对称和非线性相关性。因子 Copula 模型可以解释为具有潜在变量的条件独立性模型,而潜在变量不一定具有加性结构。我们重点研究了对社会数据分析人员有重要意义的问题,例如模型选择和拟合优度。我们的一般方法是通过广泛的模拟研究来展示,并通过重新分析三个混合响应数据集来举例说明。我们的研究表明,对于混合数据,标准因子模型可以得到显著改进,并主张转向因子 Copula 模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验