Zheng Ping, Yu Ze, Li Liren, Liu Shiting, Lou Yan, Hao Xin, Yu Peng, Lei Ming, Qi Qiaona, Wang Zeyuan, Gao Fei, Zhang Yuqing, Li Yilei
Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Beijing Medicinovo Technology Co. Ltd., Beijing, China.
Front Pharmacol. 2021 Sep 24;12:727245. doi: 10.3389/fphar.2021.727245. eCollection 2021.
Tacrolimus is a widely used immunosuppressive drug in patients with autoimmune diseases. It has a narrow therapeutic window, thus requiring therapeutic drug monitoring (TDM) to guide the clinical regimen. This study included 193 cases of tacrolimus TDM data in patients with autoimmune diseases at Southern Medical University Nanfang Hospital from June 7, 2018, to December 31, 2020. The study identified nine important variables for tacrolimus concentration using sequential forward selection, including height, tacrolimus daily dose, other immunosuppressants, low-density lipoprotein cholesterol, mean corpuscular volume, mean corpuscular hemoglobin, white blood cell count, direct bilirubin, and hematocrit. The prediction abilities of 14 models based on regression analysis or machine learning algorithms were compared. Ultimately, a prediction model of tacrolimus concentration was established through eXtreme Gradient Boosting (XGBoost) algorithm with the best predictive ability ( = 0.54, mean absolute error = 0.25, and root mean square error = 0.33). Then, SHapley Additive exPlanations was used to visually interpret the variable's impacts on tacrolimus concentration. In conclusion, the XGBoost model for predicting blood concentration of tacrolimus on the basis of real-world evidence has good predictive performance, providing guidance for the adjustment of regimen in clinical practice.
他克莫司是自身免疫性疾病患者中广泛使用的免疫抑制药物。其治疗窗狭窄,因此需要进行治疗药物监测(TDM)以指导临床用药方案。本研究纳入了2018年6月7日至2020年12月31日在南方医科大学南方医院就诊的193例自身免疫性疾病患者的他克莫司TDM数据。该研究通过逐步向前选择法确定了九个影响他克莫司血药浓度的重要变量,包括身高、他克莫司每日剂量、其他免疫抑制剂、低密度脂蛋白胆固醇、平均红细胞体积、平均红细胞血红蛋白含量、白细胞计数、直接胆红素和血细胞比容。比较了基于回归分析或机器学习算法的14种模型的预测能力。最终,通过具有最佳预测能力的极端梯度提升(XGBoost)算法建立了他克莫司浓度预测模型( = 0.54,平均绝对误差 = 0.25,均方根误差 = 0.33)。然后,使用SHapley加性解释法直观地解释各变量对他克莫司浓度的影响。总之,基于真实世界证据建立的预测他克莫司血药浓度的XGBoost模型具有良好的预测性能,可为临床实践中的用药方案调整提供指导。