Suppr超能文献

基于全身炎症指标的急性ST段抬高型心肌梗死患者恶性室性心律失常预测的可解释机器学习模型

Interpretable Machine Learning Models for Predicting Malignant Ventricular Arrhythmia in Patients with Acute ST-Segment Elevation Myocardial Infarction Based on Systemic Inflammation Index.

作者信息

Han Jiangchuan, Yuan Guoliang, Li Wei, Li Tao, Yang Liting, Chen Junming

机构信息

Department of Cardiology, Shuyang Hospital of Traditional Chinese Medicine, Shuyang, Jiangsu, China.

出版信息

Clin Appl Thromb Hemost. 2025 Jan-Dec;31:10760296251375795. doi: 10.1177/10760296251375795. Epub 2025 Sep 1.

Abstract

BackgroundPercutaneous coronary intervention (PCI) improves outcomes in ST-segment elevation myocardial infarction (STEMI) by restoring myocardial perfusion. However, post-procedural malignant ventricular arrhythmias (MVA), as a serious complication, can cause hemodynamics instability and lead to in-hospital sudden cardiac death. Systemic inflammation indices serve as reliable biomarkers of inflammatory status and may predict arrhythmia risk. Current prediction models, however, frequently overlook key inflammatory markers and predominantly rely on traditional linear methods rather than advanced machine learning (ML) techniques. To address this limitation, our study developed an interpretable ML model using systemic inflammation indices to predict in-hospital MVA risk in STEMI patients following emergency PCI, thereby facilitating clinical decision-making.MethodsWe retrospectively analyzed 485 consecutive STEMI patients, dividing them into training and temporal validation cohorts. Based on clinical outcomes, patients were stratified into MVA and non-MVA groups. In the training cohort, we developed and internally validated multiple ML models using three predictor sets: (1) systemic inflammation indices alone, (2) traditional clinical indicators alone, and (3) their combination. The models' performance was subsequently assessed in the temporal validation cohort. For the optimal model, we employed SHAP (Shapley Additive Explanations) values to evaluate feature importance and enhance model interpretability.ResultsAmong the 485 enrolled patients, 88 (18.1%) developed MVA during hospitalization. Nine predictors, including systemic inflammation indices and traditional clinical markers, were significantly associated with MVA risk. The random forest (RF) model demonstrated superior predictive performance, achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.925, outperforming logistic regression (Logit, AUC: 0.894), support vector machines (SVM, AUC: 0.898), and extreme gradient boosting (XGBoost, AUC: 0.915). SHAP analysis identified five key predictors-two systemic inflammation indices and three traditional clinical markers-as the most influential factors for assessing in-hospital MVA risk in STEMI patients after emergency PCI.ConclusionThe RF model, integrating both systemic inflammation indices and traditional clinical indicators, provides an effective tool for predicting in-hospital MVA in STEMI patients following PCI. This ML approach enhances risk stratification accuracy, facilitating early clinical intervention to mitigate MVA occurrence.

摘要

背景

经皮冠状动脉介入治疗(PCI)通过恢复心肌灌注改善ST段抬高型心肌梗死(STEMI)患者的预后。然而,术后恶性室性心律失常(MVA)作为一种严重并发症,可导致血流动力学不稳定并引发院内心源性猝死。全身炎症指标是炎症状态的可靠生物标志物,可能预测心律失常风险。然而,目前的预测模型常常忽略关键炎症标志物,且主要依赖传统线性方法而非先进的机器学习(ML)技术。为解决这一局限性,我们的研究开发了一种可解释的ML模型,利用全身炎症指标预测急诊PCI术后STEMI患者的院内MVA风险,从而促进临床决策。

方法

我们回顾性分析了485例连续的STEMI患者,将其分为训练队列和时间验证队列。根据临床结局,将患者分为MVA组和非MVA组。在训练队列中,我们使用三组预测指标开发并内部验证了多个ML模型:(1)仅全身炎症指标,(2)仅传统临床指标,(3)两者结合。随后在时间验证队列中评估模型性能。对于最优模型,我们采用SHAP(Shapley加性解释)值评估特征重要性并增强模型可解释性。

结果

在485例入组患者中,88例(18.1%)在住院期间发生MVA。包括全身炎症指标和传统临床标志物在内的9个预测指标与MVA风险显著相关。随机森林(RF)模型表现出卓越的预测性能,受试者操作特征(ROC)曲线下面积(AUC)为0.925,优于逻辑回归(Logit,AUC:0.894)、支持向量机(SVM,AUC:0.898)和极端梯度提升(XGBoost,AUC:0.915)。SHAP分析确定了五个关键预测指标——两个全身炎症指标和三个传统临床标志物——作为评估急诊PCI术后STEMI患者院内MVA风险的最具影响力因素。

结论

整合全身炎症指标和传统临床指标的RF模型为预测PCI术后STEMI患者的院内MVA提供了一种有效工具。这种ML方法提高了风险分层准确性,有助于早期临床干预以减轻MVA的发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验