Lyon Aurore, van Opbergen Chantal J M, Delmar Mario, Heijman Jordi, van Veen Toon A B
Division of Heart and Lungs, Department of Medical Physiology, University Medical Center Utrecht, Utrecht, Netherlands.
The Leon Charney Division of Cardiology, New York University Grossmann School of Medicine, New York, NY, United States.
Front Physiol. 2021 Sep 24;12:732573. doi: 10.3389/fphys.2021.732573. eCollection 2021.
Patients with arrhythmogenic cardiomyopathy may suffer from lethal ventricular arrhythmias. Arrhythmogenic cardiomyopathy is predominantly triggered by mutations in plakophilin-2, a key component of cell-to-cell adhesion and calcium cycling regulation in cardiomyocytes. Calcium dysregulation due to plakophilin-2 mutations may lead to arrhythmias but the underlying pro-arrhythmic mechanisms remain unclear. To unravel the mechanisms by which calcium-handling abnormalities in plakophilin-2 loss-of-function may contribute to proarrhythmic events in arrhythmogenic cardiomyopathy. We adapted a computer model of mouse ventricular electrophysiology using recent experimental calcium-handling data from plakophilin-2 conditional knock-out (PKP2-cKO) mice. We simulated individual effects of beta-adrenergic stimulation, modifications in connexin43-mediated calcium entry, sodium-calcium exchanger (NCX) activity and ryanodine-receptor 2 (RyR2) calcium affinity on cellular electrophysiology and occurrence of arrhythmogenic events (delayed-afterdepolarizations). A population-of-models approach was used to investigate the generalizability of our findings. Finally, we assessed the potential translation of proposed mechanisms to humans, using a human ventricular cardiomyocyte computational model. The model robustly reproduced the experimental calcium-handling changes in PKP2-cKO cardiomyocytes: an increased calcium transient amplitude (562 vs. 383 nM), increased diastolic calcium (120 vs. 91 nM), reduced L-type calcium current (15.0 vs. 21.4 pA/pF) and an increased free SR calcium (0.69 vs. 0.50 mM). Under beta-adrenergic stimulation, PKP2-cKO models from the population of models ( = 61) showed a higher susceptibility to delayed-afterdepolarizations compared to control (41 vs. 3.3%). Increased connexin43-mediated calcium entry further elevated the number of delayed-afterdepolarizations (78.7%, 2.5-fold increase in background calcium influx). Elevated diastolic cleft calcium appeared responsible for the increased RyR2-mediated calcium leak, promoting delayed-afterdepolarizations occurrence. A reduction in RyR2 calcium affinity prevented delayed-afterdepolarizations in PKP2-cKO models (24.6 vs. 41%). An additional increase in I strongly reduced delayed-afterdepolarizations occurrence, by lowering diastolic cleft calcium levels. The human model showed similar outcomes, suggesting a potential translational value of these findings. Beta-adrenergic stimulation and connexin43-mediated calcium entry upon loss of plakophilin-2 function contribute to generation of delayed-afterdepolarizations. RyR2 and NCX dysregulation play a key role in modulating these proarrhythmic events. This work provides insights into potential future antiarrhythmic strategies in arrhythmogenic cardiomyopathy due to plakophilin-2 loss-of-function.
致心律失常性心肌病患者可能会遭受致命的室性心律失常。致心律失常性心肌病主要由桥粒芯蛋白2的突变引发,桥粒芯蛋白2是心肌细胞间细胞黏附及钙循环调节的关键组成部分。桥粒芯蛋白2突变导致的钙调节异常可能会引发心律失常,但其潜在的促心律失常机制仍不清楚。为了阐明桥粒芯蛋白2功能丧失导致的钙处理异常可能促成致心律失常性心肌病中促心律失常事件的机制,我们利用来自桥粒芯蛋白2条件性敲除(PKP2-cKO)小鼠的最新实验性钙处理数据,改编了小鼠心室电生理的计算机模型。我们模拟了β-肾上腺素能刺激、连接蛋白43介导的钙内流改变、钠钙交换体(NCX)活性及兰尼碱受体2(RyR2)钙亲和力对细胞电生理及致心律失常事件(延迟后去极化)发生的个体影响。采用模型群体方法来研究我们研究结果的普遍性。最后,我们使用人类心室心肌细胞计算模型评估了所提出机制对人类的潜在转化价值。该模型有力地再现了PKP2-cKO心肌细胞实验性钙处理变化:钙瞬变幅度增加(562对383 nM)、舒张期钙增加(120对91 nM)、L型钙电流降低(15.0对21.4 pA/pF)及肌浆网游离钙增加(0.69对0.50 mM)。在β-肾上腺素能刺激下,模型群体(n = 61)中的PKP2-cKO模型与对照相比,对延迟后去极化表现出更高的易感性(41%对3.3%)。连接蛋白43介导的钙内流增加进一步提高了延迟后去极化的数量(78.7%,背景钙内流增加2.5倍)。舒张期裂隙钙升高似乎是RyR2介导的钙泄漏增加的原因,促进了延迟后去极化的发生。RyR2钙亲和力降低可防止PKP2-cKO模型中延迟后去极化的发生(24.6%对41%)。I的额外增加通过降低舒张期裂隙钙水平,强烈减少了延迟后去极化的发生。人类模型显示出相似的结果,表明这些研究结果具有潜在的转化价值。β-肾上腺素能刺激及桥粒芯蛋白2功能丧失时连接蛋白43介导的钙内流促成了延迟后去极化的产生。RyR2和NCX失调在调节这些促心律失常事件中起关键作用。这项工作为因桥粒芯蛋白2功能丧失导致的致心律失常性心肌病潜在的未来抗心律失常策略提供了见解。