Chu Everett, Hindle Anna Katherine, Abeledo Hernan, Amdur Richard, Coudert Anthony, Gill Gurwinder, Heinz Eric R, Lee Kyung-Min, Moy Gregory, Schroff Christopher, Sherman Marian, Berger Jeffrey S
J Educ Perioper Med. 2021 Jul 1;23(3):E665. doi: 10.46374/volxxiii_issue3_berger. eCollection 2021 Jul-Sep.
Most postgraduate medical education occurs in hospitals in an apprenticeship model with actual patients. Creating a work shift schedule must account for complex factors, including hospital needs, work-hour restrictions, trainee qualifications, and case distribution in order to fairly allocate the resident workload. In this study, we report the first successful implementation of an equitable, computer-generated scheduling system for anesthesiology residents.
A total of 24 residents at a single, urban training program were surveyed in 2015 to rank work shift difficulty. Shifts were categorized and translated into a weighted point system by program leadership based on the survey results. An automated and modifiable scheduling system was created to incorporate rule-based assignment of prerequisites and evenly distribute points throughout the academic year. Point values were retrospectively calculated in 2014, and prospectively calculated from 2015 to 2018. The equality of variance test was used to evaluate the variation of the SD of monthly average point distributions year-over-year and within each class of trainees.
Year-over-year analysis revealed that post-point system implementation, call point distribution trended toward reduced variance in all 4 years, with significant reductions of 63% in 2016 (SD 4.9, < .01), and 57% in 2017 (SD 5.8, < .01). Analyzed by class, first-year trainees' SD decreased by 73% in 2016 (SD 2.5, < .01), by 67% in 2017 (SD 3.1, < .04), and 65% in 2018 (SD 3.3, < .02) compared with the pre-point system year in 2014. The second year clinical anesthesia resident class SD decreased by 56% in 2015 (SD 5.9, < .01), 41% in 2016 (SD 7.9, < .02), and 49% in 2017 (SD 6.9, < .01).
The computerized point system improved work distribution equity year-over-year and within trainee cohort groups.
大多数研究生医学教育是在医院以带教实习模式进行,接触实际患者。制定工作排班表必须考虑复杂因素,包括医院需求、工作时间限制、实习生资质以及病例分布,以便公平分配住院医师工作量。在本研究中,我们报告了首个成功为麻醉科住院医师实施的公平、计算机生成的排班系统。
2015年,对一个城市培训项目中的24名住院医师进行了调查,以对工作班次难度进行排名。项目负责人根据调查结果对班次进行分类,并转化为加权积分系统。创建了一个自动化且可修改的排班系统,纳入基于规则的先决条件分配,并在整个学年均匀分配积分。积分值在2014年进行回顾性计算,2015年至2018年进行前瞻性计算。采用方差齐性检验评估月平均积分分布标准差逐年以及在每个实习生类别内的变化情况。
逐年分析显示,在实施积分系统后,呼叫积分分布在所有4年中均呈现方差减小趋势,2016年显著降低63%(标准差4.9,<0.01),2017年降低57%(标准差5.8,<0.01)。按类别分析,与2014年积分系统实施前一年相比,一年级实习生的标准差在2016年降低了73%(标准差2.5,<0.01),2017年降低了67%(标准差3.1,<0.04),2018年降低了65%(标准差3.3,<0.02)。二年级临床麻醉住院医师类别的标准差在2015年降低了56%(标准差5.9,<0.01),2016年降低了41%(标准差7.9,<0.02),2017年降低了49%(标准差6.9,<0.01)。
计算机化积分系统逐年以及在实习生队列组内改善了工作分配公平性。