Suppr超能文献

利用机器学习技术检测钓鱼网站。

Detecting phishing websites using machine learning technique.

机构信息

Department of Computer Science and Information System, College of Applied Sciences, Almaarefa University, Riyadh, Saudi Arabia.

出版信息

PLoS One. 2021 Oct 11;16(10):e0258361. doi: 10.1371/journal.pone.0258361. eCollection 2021.

Abstract

In recent years, advancements in Internet and cloud technologies have led to a significant increase in electronic trading in which consumers make online purchases and transactions. This growth leads to unauthorized access to users' sensitive information and damages the resources of an enterprise. Phishing is one of the familiar attacks that trick users to access malicious content and gain their information. In terms of website interface and uniform resource locator (URL), most phishing webpages look identical to the actual webpages. Various strategies for detecting phishing websites, such as blacklist, heuristic, Etc., have been suggested. However, due to inefficient security technologies, there is an exponential increase in the number of victims. The anonymous and uncontrollable framework of the Internet is more vulnerable to phishing attacks. Existing research works show that the performance of the phishing detection system is limited. There is a demand for an intelligent technique to protect users from the cyber-attacks. In this study, the author proposed a URL detection technique based on machine learning approaches. A recurrent neural network method is employed to detect phishing URL. Researcher evaluated the proposed method with 7900 malicious and 5800 legitimate sites, respectively. The experiments' outcome shows that the proposed method's performance is better than the recent approaches in malicious URL detection.

摘要

近年来,互联网和云技术的进步使得电子交易大量增加,消费者可以在线购买和交易。这种增长导致用户的敏感信息被未经授权访问,并损害了企业的资源。网络钓鱼是一种常见的攻击方式,它诱使用户访问恶意内容并获取他们的信息。就网站界面和统一资源定位符(URL)而言,大多数网络钓鱼网页看起来与实际网页完全相同。已经提出了各种检测网络钓鱼网站的策略,例如黑名单、启发式等。然而,由于安全技术效率低下,受害者的数量呈指数级增长。互联网匿名且不可控的框架更容易受到网络钓鱼攻击。现有研究表明,网络钓鱼检测系统的性能有限。需要一种智能技术来保护用户免受网络攻击。在这项研究中,作者提出了一种基于机器学习方法的 URL 检测技术。采用递归神经网络方法来检测网络钓鱼 URL。研究人员分别用 7900 个恶意网站和 5800 个合法网站评估了所提出的方法。实验结果表明,所提出的方法在恶意 URL 检测方面的性能优于最近的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e60c/8504731/ac8b1e341c60/pone.0258361.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验